

1 / 26

Bootkit's development overview and trend

AVAR2012 / by nEINEI && Jason Zhou

Keywords: bootkit, MBR, DBR, VBR, NTFS, Windows Kernel

Abstract

Windows bootkit’s development speed is rapid. It has developed from initial POC

(Proof-of-Concept) stage to current having several stable virus families. Bootkit’s infection

measures also extended to BIOS chips, disk MBR, VBR and etc. All these have brought

challenges for the security of system boot and kernel entrance. So how to find advantages in the

confrontation with bootkit is the problem we have to face in the future.

Introduction

In 2005, the company, eEye Digital, first brought in the idea of bootkit, which stands for boot

rootkit, in their project, ‘BootRoot’ [1]. Generally speaking, one rootkit which is loaded earlier

than Windows kernel could be considered as a bootkit. So in this paper, all the mentioned

Bootkit viruses use this definition.

After Phanta, also known as GhostShadow, first generation bootkit appeared in China in

March 2010, Chinese bootkits entered a period of development. So far we already found 5 kinds

of relative Phanta variations. Their infection measures, code obfuscation tricks and

self-protection approaches have big improvements. As with the development of global bootkit

viruses, such as TDSS and Rovnix bootkit families, the trend of bootkit learning from each

other becomes more obvious. So in this paper, we will first review the development status of

bootkits all over the word from 2010. Then we will have a targeted introduction of Chinese

bootkits.

1. Technical overview of bootkits for last three year

1.1 Bootkits in 2010

1.1.1 Phanta 1 As we mentioned above, Phanta 1 should be considered as the first bootkit virus

in China. After system is infected by Phanta 1, the malicious MBR copies virus data to the end

of real-mode memory and hooks int 13h interruption. Then copies the original MBR code to the

address 0x7c00 then passes the control to it.

When the boot code reads the file ntldr by invoking int 13h interruption, Phanta 1 gets the

control. It searches for the signature, 0x74f685f0 and 0x3d80, in the function

BILoadBootDrivers of ntldr. If the signature is found, Phanta 1 hooks the next line of code

below the signature.

2 / 26

Fig.1 Phanta 1 hooks ntldr

When function off_97400 is called, Phanta 1 gets the image base of ntoskrnl and parses its

PE structure to find the section with the parameter 0x20000000. After the section is found,

Phanta 1 copies its 4 sectors’ virus codes to that area. Then Phanta 1 parses the Export Table to

address the function PsCreateSystemProcess to hook the function PspCreateProcess.

Fig.2 hook PsCreateProcess

After a new process is being created, Phanta 1 gets the control again. It checks the PID of

created process. If the PID equals 4, meaning the process is system.exe, Phanta 1 then loads its

virus driver.

On the whole, Phanta 1 is an imitation of Mebroot, specifically in the malicious MBR code,

the way to patch ntldr and load virus driver. For example, Phanta 1 uses the same signature as

Mebroot to search for the address to patch ntldr. (0x74f68f50 and 0x3d80 are the signatures)

3 / 26

Fig.3 Mebroot’s MBR code

Fig. 4 Phanta 1’s MBR code

In code layout aspect, Phanta 1 also imitates Mebroot’s structure.

4 / 26

Fig. 5 contrast between the code layouts of Mebroot and Phanta 1.

Like Mebroot, Phanta 1 only infects 32-bit Windows XP.

1.1.2 TDL-4 Also known as Alureon and Olmarik, TDL-4 is the 4th generation of TDSS bootkit

family. Compared with earlier versions, TDL-4 has big improvements and indeed brings an

evolution in bootkit development process.

TDL-4 firstly came into our eyes in August, 2010. Then it has been consistently in the wild

until the end of year 2011. But the main functions keep almost the same except the payload.

As with previous versions, TDL-4 makes use of a configuration file, cfg.ini, to handle the

communications between user mode and kernel mode. Below is the cfg.ini we found at the very

beginning when TDL-4 was found.

Fig. 6 TDL-4 Found in August 2010

TDL-4 takes advantage of a lot of first seen techniques. It’s the first rootkit virus compatible

with all versions of Windows, including 64-bit Windows 7. Below is the TDL-4’s boot

process.

5 / 26

Fig. 7 TDL-4 boot process

In order to bypass PatchGuard in 64-bit systems and avoid being debugged, TDL-4’s

real-mode loader module, ldr16, hijacks kdcom.dll with ldr32 or ldr64, depending on Windows

platform. After ldr32/64 is loaded and the exported function, KdDebuggerInitialize1, is called,

an image notification routine is set by calling PsSetLoadImageNotifyRoutine. In this routine,

TDL-4 uses an undocumented function, IoCreateDriver, to create a driver object. In this driver

object’s DriverEntry function, a PnP notification routine is registered by calling

IoRegisterPlugPlayNotification. When this PnP notification routine is invoked, TDL-4 searches

its own file system for its main rootkit driver module, drv32/64 and then load them.

Fig. 8 set an image notification routine

Fig. 9 a driver object is created in the routine

TDL-4’s self-protection approaches are complicated, including adding system callbacks,

6 / 26

hijacking Dr0, hooking DriverStartIo routine of Atapi driver, using kernel work item thread to

protect hooked functions. This makes it difficult to clean TDL-4 completely.

1.2 Bootkits in 2011

2011 is the year of concentrated outbreak of bootkits. There are several important bootkit

families coming out, including ZeroAccess, Phanta and TDSS.

1.2.1 Phanta 2 Phanta 2 first appeared in March 2011. Compared with Phanta 1, Phanta 2 has

below major changes:

1. Malicious MBR code is obfuscated so that it becomes more difficult to analyze

statically.

2. Virus data written to disk’s first 6 sectors is encrypted.

3. Directly overwrite %systemroot%system32/drivers/fips.sys instead of hooking

PspCreateProcess to load virus driver.

1.2.2 Phanta 3 Phanta 3 appeared in May, 2011. Compared with Phanta 2, Phanta 3 pays

attention to protect the malicious MBR. It learns from TDL-4’s framework. But it implements

these functions in a simplified way.

1. Phanta 3 encrypts and stores original MBR and the code of patching ntldr at the end of

disk. It stores nothing in the first 64 sectors of the disk any more.

2. It hooks DriverStartIo dispatch function of the driver Atapi or SCSI to protect

malicious MBR instead of hooking reading and writing dispatch function of disk.sys which

Mebroot used.

3. It replaces beep.sys with malicious driver, hello_tt.sys.

Fig. 10 replace beep.sys

1.2.3 TDL-4 version 0.31. We captured TDL-4’s upgraded variations in August 2011. Its main

module’s version is 0.03. And the payload’s version is 0.31. Still, compared with earlier

variations, nothing big changed except payload.

7 / 26

Fig. 11 TDL-4 variation found in May 2011

Fig. 12 TDL-4 variation found in September 2011

Fig. 13 image notification routine is changed into thread notification routine.

1.2.4 ZeroAccess ZeroAccess, also known as Max++, firstly came into our eyes in August 2011.

Till now while this paper is being written, we could still hear ZeroAccess’s traces in the wild.

ZeroAccess is different from other bootkits mentioned in this paper because it doesn’t

8 / 26

modify system’s bootstrap code. ZeroAccess’s dropper chooses a random driver between

classpnp.sys and win32k.sys to infect in overwriting way. Then use ZwLoadDriver to load the

driver. This driver is obfuscated and packed. This is quite rare among the virus drivers we’ve

ever seen as packing in kernel mode might cause unpredictable issues. The original virus driver

is stored in the packed driver’s body. After decompressed into the memory, we could see the

original driver’s file image.

Fig. 14 decompress original driver’s body

After maping the file image into memory, the packed driver will search the PE structure to

find the entry point of the original driver.

9 / 26

Fig. 15 memory relocation

Fig.16 get the entry point

After entering the original virus driver’s code space, ZeroAccess creates a device object to

store its virus components and communicate with user mode.

Fig.17 create the device object (22h stands for FILE_DEVICE_UNKNOWN)

Then it creates an IRP hooking driver to hijack disk.sys.

Fig. 18 create IRP hooking driver

10 / 26

Fig.19 hook disk.sys

Besides these, ZeroAccess also creates other system threads, APC calls and timers. All these

together make it difficult to remove ZeroAccess completely.

1.2.5 TDL-MaxSS TDL-MaxSS came out in November 2011. It’s considered as the upgraded

version of TDL-4. Compared with TDL-4, MaxSS improves the way to infect MBR. It no

longer overwrites original MBR directly. Instead, it modifies DPT (Disk Partition Table) and

points it to virus code. In other words, MaxSS forges a new boot partition.

Fig. 20 contrast between normal DPT and MaxSS infected DPT

This is a creation in bootkit development process. As a result, security tools could not only

use simple signature matching to check for MBR infection.

1.2.6 Phanta 4 Phanta 4 is also known as Bioskit or Win32/Wapomi.e. Before 2011, Bioskit yet

remained in the conceptual stage. Although some researchers provided ways to attack BIOS in

Blackhat 07 [2] and CanSecWest 09 [3], there are difficulties in actual operation. In September

2011, a bioskit virus which targeted Award BIOS appeared in China. That’s Phanta 4.

11 / 26

For Award BIOS computers, Phanta 4 infects BIOS by inserting a malicious ISA module. For

non-Award BIOS ones, Phanta 4 modifies MBR in common bootkit way.

First, Phanta 4 makes use of cbrom.exe to insert the malicious ISA module, hook.rom, into

Award BIOS.

Fig. 21 use cbrom.exe to insert hook.rom

Second, Phanta 4 replaces beep.sys with its virus driver to check BIOS type, backup original

BIOS and flash BIOS.

Fig. 22 virus driver’s device control dispatch routine

When the compromised system restarts, malicious hook.rom runs before MBR. It first checks

12 / 26

whether MBR is infected.

Fig. 23 check MBR infection

If the MBR is not infected, hook.rom infects it. The malicious MBR code loads DBR (DOS

Boot Record) to the address 0x7c00 and checks the file system format of disk’s boot partition.

Then parse the boot partition to search for winlogon.exe or wininit.exe. Afterwards, patch

winlogon.exe/wininit.exe and print ‘Find it OK!’

13 / 26

Fig. 24 print ‘Find it ok!’

1.3 Bootkits in 2012

1.3.1 Rovnix. Earlier Rovnix variations looked like a fully upgraded version of TDL-4. Its

inside modules are designed separately to infect 32-bit and 64-bit Windows.

Rovnix infectes VBR(Volume Boot Record). In malicious VBR code, Rovnix hooks int 13h

interruption function to patch ntldr or bootmgr. After patching, it injects malicious codes into

ntoskrnl.exe’s memory to load virus driver.

14 / 26

Fig. 25 patch ntldr/bootmgr

Rovnix’s boot loader is highly obfuscated. Its code is divided into many small blocks. Each

snippet is connected with others with jmp or a meaningless call function. And Rovnix’s each

variation’s boot loader is different from others. This makes it difficult to analyze and detect.

Fig. 26 Rovnix’s boot loader code snippet

15 / 26

Fig. 27 Rovnix’s boot loader real working flow

1.3.2 Plite Plite is a special bootkit family. After infecting MBR, Plite parses FAT/NTFS file

system to locate and overwrite explorer.exe. This is nothing new as Phanta 4 behaves in the

same way. Why Plite is special is because its modules are developed in several different

languages. Its dropper is written in C#. The dropped file is developed in Delphi. And the boot

loader module is compiled with Microsoft FORTRAN compiler.

We could see some debugging information in boot loader.

Fig. 28 boot loader code snippet

16 / 26

Fig. 29 boot loader compilation information

1.3.3 Phanta 5 (Phanta’s latest version, also known as Win32/Wapomi.f) In July 2012,

several new variations of Phanta family quickly came out in China. Phanta 5 encrypts and stores

its malicious modules in its resource section. Below we could see the differences between two

variations we captured in July 2012.

Fig. 30 Phanta 5 module differences

Compared with earlier versions, Phanta 5 has below major improvements:

1. Dropper injects explorer.exe process to drop a random driver file, x_random.sys. Then

hijacks below services to load virus driver.

Fig. 31 hijacked service list

2. Driver x_random.sys hooks DriverStartIO dispatch routine of Atapi/SCSI driver to

protect MBR.

17 / 26

3. MBR loads another driver to hook reading and writing dispatch routines of disk.sys in

order to protect MBR doubly.

4. X_random.sys hooks SSDT functions to stop AV services.

Fig. 31 kill AV services

5. Phanta 5 stores original MBR, boot loader, fake sfc_os.dll and x_random.sys at the end

of disk partition, without encryption.

Below is Phanta 5’s boot process.

Fig. 32 Phanta 5 boot process

18 / 26

2. Bootkit in China

Chinese bootkit has developed for some time. Early in May 2007, the Chinese developer,

icelord, released a tool, named ICLord Bioskit [4], which could infect Award main board. In

November 2008, the developer, inghu, published a bootkit idea to patch ntldr. The Chinese

researcher, mj0011, published bootkit tophet[5] in Xcon2008. But all these are only technology

researches. Bootkit viruses didn’t spread widely until March 2010. And afterwards, Chinese

bootkit entered a period of development. So below sections will describe the characteristics of

bootkit viruses in China.

2.1 Anti-static-detection for MBR In order to prevent detecting malicious MBR, bootkit

viruses are always looking for new methods. Phanta 1 has tiny improvements. It no longer

operates BIOS’s data at address 0x413 directly. Instead, it substitutes the equivalent instructions

to achieve the same goal.

Fig. 33 0x413 substitution

Phanta 2 and Phanta 3 insert junk codes to interfere analysis. Also their malicious MBR and

virus data are encrypted.

Fig. 32 junk code in Phanta 2/3 MBR

Phanta 5 doesn’t hook int 13h interruption as other bootkits do. Instead, it repeatedly calls a

function cs:dword_2580.

19 / 26

Fig. 33 Phanta 5 calls cs:dword_2580 repeatedly

But the beginning of the function cs:dword_2580 is incorrect.

Fig. 34 begginging of cs:dword_2580

The truth is while running, Phanta 5 overwrites the first 8 bytes of cs:dword_2580 with

0xe3fe and 0xf000 which stand for int 13h interruption function’s original address in BIOS.

Fig. 35 cs:dword_2580 while running

2.2 Virus data storage Both Phanta 1 and Phanta 2 store their virus data in the first 63 sectors

of disk. The only difference is that Phanta 2 encrypts the data before writing.

Phanta 3 stores its virus data at the end of disk with encryption.

Phanta 5 also puts its virus modules at end of disk but without encryption.

20 / 26

We could see that Chinese bootkit virus authors’ data protection consciousness is not that

strong. They prefer to protect their ‘babies’ by driver rather than designing custom file system as

TDL-4 does.

2.3 Self-protection Phanta 1 installs several filter callback functions by calling

PsLoadImageNotifyRoutine, PsCreateProcessNotifyRoutine and PsCreateThreadNotifyRoutine.

Then enumerate processes to kill AV.

Phanta 2 also kills AV. It hooks PsLoadImageNotifyRoutine. When a kernel module is being

loaded, Phanta 2 checks the module’s digital signature whether the module is an AV module. If

yes, Phanta 2 patches the module’s entry point and make it return failure.

Phanta 3 protects MBR by hooking DriverStartIo dispatch routine of Atapi/SCSI driver.

Fig. 36 Phanta 3 hooks DriverStartIo

Phanta 4 uses malicious BIOS rom to protect MBR.

Phanta 5 prevents AV driver from loading. (Fig. 31) And it protects MBR doubly.

Fig. 37 double protection for MBR

21 / 26

2.4 Interesting findings From above aspects, we can see that Chinese bootkits virus authors are

making efforts to do better. They learnt from other bootkits and improved their own.

During analysis for Phanta 4, we found that Phanta 4 drew ICLord’s way to infect BIOS.

Fig. 38 contrast between ICLord and Phanta 4.

One thing similar happened in Phanta 5. We found earlier Phanta 5’s code to parse

FAT/NTFS file system is very similar to Stoned Bootkit’s open source.[6]

Fig. 39 contrast between Phanta 5 and Stoned Bootkit

But soon, we found newer Phanta 5 removed this code block. Instead, it uses another way to

parse file system. We’re not sure whether it’s original. But it’s better indeed.

22 / 26

Fig. 40 new code snippet to parse file system in Phanta 5

3 Windows bootkit attack trend forecast

In recent years, bootkit had continuous improvements on means of attack. The improvements

specifically embody in below aspects:

3.1 Hardware level infection Starting from eEye’s BootRoot project, BIOS infection is not

generated as a concept. Afterwards, more researches were stimulated in this direction. Peter

Kleissner demonstrated using bootkit to bypass Windows 8’s UAC in MalCon Assembly in

November 2011. Although the targeted Windows 8 system is booted based on BIOS, this

indicates that traditional bootkit threat won’t die before we enter the UEFI era.

On the other hand, researchers and hackers have never stopped the discussion on UEFI

security. In 2012, we saw several technological breakthroughs, such as Loukas’s EFI Rootkit for

Mac in Black Hat USA 2012, Jonathan Brossard’s UEFI rootkit, Rakshasa. These provide the

basis of underlying technology for the development of bootkit. When the time comes, they will

be transformed into the reality of attacks.

3.2 Obfuscation in 16-bit boot loader In order to escape static detection, bootkits began to

obfuscate their boot loaders, such as encryption, inserting junk code, etc. Rovnix.b’s boot loader

is polymorphic.

23 / 26

Fig. 41 Rovnix.b’s boot loader code

Take a look at function run_obs_code. You could see the inside push and pop instructions

don’t match. The number of push is one more than pop. So when ret is executed, the flow will

not go to the next instruction after run_obs_code. We got troubles while debugging before we

were aware of this traps.

Phanta 5 seems to draw this experience. Although Phanta 5’s boot loader code is not

polymorphic, the confusing jmp instructions indeed make analysis more difficult.

3.3 Protection of virus data In order to strengthen protection of virus data, TDL-4 designed its

own file system. Except malicious MBR, all the other modules of TDL-4 are stored in its

custom file system.

Fig. 42 TDL-4’s file system

After wards, we could see the similar way is widely used in newly coming bootkit viruses.

Bootkit could make this even more complicated, because this only depends on the strength of

encryption algorithm and the complexity of the file structure. Theoretically, any kernel module

could be put into this file system. It’s up to bootkit to decide when and which to load. If so, this

24 / 26

will be the worst thing.

4 Problems of prevention and detection

The biggest difference between bootkit virus and other types of virus is that bootkit virus

obtains control earlier than Windows. Thus, it could make any change to the system at the same

time hiding itself. Once a bootkit is installed successfully, the subsequent cleanup work will be

very complicated.

The prevention of bootkit includes protecting disk’s reading and writing, monitoring driver

loading. Most AVs already paid attention to these aspects. But bootkit authors are keeping

digging the weakness and missing corners of security tools. This also becomes one of the

defense problems.

4.1 Dangerous API Current HIPS systems are based on the trust mechanism of process chain,

meaning that if a process is to be trusted, any operation of this process is trusted, including

creating a new child process. TDL-4 uses AddPrintProvidor to load its virus driver because the

printer process spoolsv.exe is trusted.

Also in Phanta 5, we saw the use of ‘vulnerability’ of functions LoadKeyboardLayoutA and

ZwQueryValueKey. When we call PostMessage to post a

WM_INPUTLANGCHANGEREQUEST message to explorer’s window, explorer will load a

new keyboard layout. Phanta 5 hooks ZwQueryValueKey to modify the IME file which explorer

is to load. Thus, explorer loads a virus module. As explorer.exe is a trusted process, Phanta 5

could do anything in explorer’s memory, including loading virus driver.

These three functions have one thing in common. Although they’re only called in their own

processes, they affect the whole system. We name them ‘dangerous API’. Finding the

vulnerabilities of dangerous APIs is the easiest way to bypass HIPS.

4.2 Alternative penetration of disk Protection of disk’s boot section has already attracted the

attention of many security tools. HIPS tools also monitor disk’s reading and writing operations

by checking the access to path \\.\PhysicalDrive0 or \DEVICE\HARDDISK\DR0.

But recently we found a new way to bypass such protection. First you send a

SCSI_PASS_THROUGH instruction to the disk, which is a standard SCSI instruction. When

current physical disk’s corresponding bus device symbol link is found, you need to fill in the

SCSI_PASS_THROUGH structure and send a DeviceIoControl code, 0x4D014, which stands

for METHOD_BUFFERED, to disk driver. Then you could bypass above disk protection

approaches and modify the disk.

25 / 26

Fig. 43 bypass disk protection

During our tests, most HIPS tools could not prevent such attack.

4.3 Once again-What’s bootkit? Above we described several complicated bootkit families. We

mentioned their development and their differences. We also predict their development trend.

Now we want to raise the question again. How to define a bootkit’s technical characteristic?

We believe that a bootkit overall consists of three stages.

Fig. 44 Bootkit composition

Boot stage’s purpose is to obtain control before system startups. It might lie in UEFI, BIOS,

MBR, VBR, Bootstrap code, ntldr, bootmgr, and etc.

Patch kernel code stage is mainly to bypass system protection and load virus driver.

Searching where to patch is just like looking for Zero Day vulnerabilities in system kernel.

Although we saw several different kinds of bootkit family, their boot process have many

similarities. Bootkit authors do not want to spend their time on digging where to patch, as long

as one stable patching way is enough.

Load driver stage is easy to understand. Once the kernel is patched, bootkit could load its

virus driver in kernel. Thus virus driver is loaded earlier than other drivers.

26 / 26

Summary

We believe bootkit threat will still continue to persist and evolve. Meanwhile, as the cost of

developing a stable bootkit virus family is much higher than other types of virus, we guess there

won’t be many new bootkit families coming out. And we believe Secure Boot or UEFI would

relieve bootkit attack. Currently, our terminal defense system has inherent weakness. Client’s

AV products could not protect both software and hardware. Even the cleanup work for bootkit

could not be put into AV’s engine. So we advise to back up the core data in system boot phase

plus defense in application layer.

References

[1] Derek Soeder, Ryan Permeh: eEye BootRoot on

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf (Blackhat 2005)

[2] John Heasman: Hacking firmware on

https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-hea

sman.pdf (Blackhat 2007)

[3] Anibal L. Sacco, Alfredo A. Ortega: Persistent BIOS Infection on

http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest

09.pdf (CanSecWest09)

[4] IceLord, BIOS RootKit: Welcome Home, My Lord! On

http://www.xfocus.net/articles/200705/918.html (Xfocus 2007)

[5] MJ0011: Advanced Bootkit-Tophet on http://xcon.xfocus.org/XCon2008/index.html

(XCon 2008)

[6] Peter Kleissner: Stoned Bootkit on

http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-St

onedBootkit-PAPER.pdf (Blackhat 2009)

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
http://www.xfocus.net/articles/200705/918.html
http://xcon.xfocus.org/XCon2008/index.html
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf

