
BIOS Boot Hijacking
And 

VMware Vulnerabilities Digging

Sun Bing
taoshaixiaoyao@hotmail.com

POC2007 Seoul Korea

16th Nov 2007



PARTI: BIOS Boot Hijacking

In this part, I will disclose a fire-new BIOS Boot hijacking 
method by using the so-called “Top-Block Swap” mode that is 
supported by Intel ICHx series south bridge chips. The “Top-
Block Swap” mode of ICHx swaps the top block (the Boot Block) 
in the Firmware Hub (FWH) with another location, which allows 
for safe update of the Boot Block even if a power failure 
occurs, however due to a negligence in BIOS designing and 
coding, it fails to lock down the swap function before handing 
over the control to operating system once Boot phase 
successfully completed, which then makes an original security 
mechanism become a severe security hole, a malicious program 
can easily exploit this swap function to perform a DOS attacks, 
which would lead to a Boot failure of the victim computer, or 
to be even worse it may directly inject a piece of customized 
codes into the swap block, which enables this codes to gain 
execution control even before system BIOS and then to 
compromise the whole system. 



Reset Vector

When creating an address, CPU only need to add the offset to 
the base address located in the invisible part of segment 
register, regardless of the current CPU mode – real mode or 
protected mode, and when switching from real mode to protected 
mode (or being back to real mode from protected mode), the 
segment base address, limit and right attribute will not 
change as long as the corresponding segment register has not 
been reloaded. 

Right after CPU power-on, the selector value of CS segment 
register is 0xF000, EIP is 0x0000FFF0, however the base 
address at that time is 0xFFFF0000, therefore the first 
instruction address executed by CPU is at 0xFFFFFFF0 (a.k.a., 
Reset Vector) other than 0xFFFF0 that is computed by the real 
mode method (segment register value left shifts 4 bits then 
plus the offset), but after the first far jump and CS segment 
reloading, the base address will be altered. 



Dell D620 (NB I945 + SB ICH7)



Dell D620 (SB ICH7)



BIOS Memory Address Decoding Map

Right after machine power-on and the very beginning of the Boot 
stage, the E_segment (0xE0000~0xEFFFF) and F_segment 
(0xF0000~0xFFFFF) are not claimed by North Bridge, and all 
accesses to these ranges are actually forwarded to South Bridge 
and decoded by Firmware Hub (FWH) until subsequently North 
Bridge RAM shadowing function will be enabled by BIOS code. 

E_segment/F_segment and their counterparts in High BIOS Area 
(topmost 2M in the whole accessible 4G physical memory space) 
are both decoded by FWH into the last two 64k of BIOS ROM chip, 
so we can say that E_segment and F_segment alias to 
0xFFFE0000~0xFFFEFFFF and 0xFFFF0000~0xFFFFFFFF respectively. 

The first instruction that CPU executes upon power-on is at 
0xFFFFFFF0 (alias to 0xFFFF0 and both are within BIOS ROM chip) 
where usually a far jump instruction resides (mostly JMP 
F000:E05B, and after this jump CS base 0xFFFF0000 will get 
flushed) , so the next instruction will be fetched from 0xFE05B 
(alias to 0xFFFFE05B) which is also decoded into BIOS ROM. 



Memory Range Decode Map of ICH7



The Working Principle of Swap Mode

The Intel ICHx series South Bridge (since ICH2) supports a 
“Top-Block Swap” mode that has the ICHx swap the top block in 
the Firmware Hub (the Boot Block) with another location, which 
allows for safe update of the Boot Block even when a power 
failure occurs. When the “TOP_SWAP” Enable bit (BUC.TS) is set, 
the ICHx will invert the 16th bit of address line A16 for 
cycles targeting Firmware Hub space, in this way processor 
accesses to 0xFFFF0000~0xFFFFFFFF will be directed to 
0xFFFE0000~0xFFFEFFFF in the Firmware Hub, and vice versa, and 
this bit can only be cleared by a RTCRST# (Real Time Clock 
Reset Signal). Moreover ICHx also provides a BIOS Interface 
Lock-Down bit (GCS.BILD) to prevent “TOP_SWAP” bit from being 
altered, and a Top Swap Status bit (BIOS_CNTL.TSS) as well to 
view the current status of Top Swap bit. One thing should be 
noticed is that the Swap mode has no effect on accesses below 
0xFFFE0000.



Top-Block Swap Enable Bit



BIOS Interface Lock-Down Bit



Swap Mode Based BIOS Safe Update Scheme

This BIOS update scheme is based on the concept that the top block 
(0xFFFF0000~0xFFFFFFFF) is reserved as the “boot” block, and the block 
immediately below the top block (0xFFFE0000~0xFFFEFFFF, “swap” block) 
is reserved for doing boot-block updates. The algorithm is:

1. Software copies the top block to the block immediately below the top.

2. Software checks that the copied block is correct. This could be done by 
performing a checksum calculation.

3. Software sets the TOP_SWAP bit, enable the A16 address bit inversion.

4. Software erases the top block.

5. Software writes the new top block.

6. Software checks the new top block.

7. Software clears the TOP_SWAP bit.

8. Software sets the Top_Swap Lock-Down bit.

If a power failure occurs at any point after step 3, the system will be 
able to boot from the copy of the boot block that is stored in the 
block below the top. This is because the TOP_SWAP bit is backed in the 
RTC well.



The Exploitation of Swap Mode

Because most BIOS codes fail to lock down the swap 
function by setting the BIOS Interface Lock-Down 
bit in ICHx South Bridge before transferring 
control to operating system after Boot process 
finished, a malicious program may therefore exploit 
this security hole to perform a DOS or code 
injecting attack against the victim host.

Demonstration：View the result of 
address inversion under Top Swap mode.



DOS Attack
Only setting “TOP_SWAP” enable bit but not preparing a proper boot code at 
the location of backup block (the second 64k block below the top of 4G 
physical memory space) would lead to a kind of DOS attack which results 
in the boot failure of the victim computer until having discharged its 
CMOS, the reason is that once set, the “TOP_SWAP” enable bit will be kept 
permanently within the RTC register until a signal of RTCRST# asserted.

void enable_top_swap()
{

unsigned long prcba, gcs;
void *p;
prcba = retrieve_rcba();
p = MapPhysicalAddressRange(prcba + 0x3410, 0x10);
gcs = *(unsigned long*)p;
// test GCS.BILD bit
if (!(gcs & 1))
{

// not locked, set BUC.TS
*((unsigned char*)p + 4) |= 1;

}
UnmapPhysicalAddressRange(p, 0x10);
return;

}



Code Injecting Attack (1)

We can achieve an easy BIOS Boot Hijacking with the support of 
“Top-Block Swap” mode: Firstly, try to write (BIOS flashing) our 
customized codes into the backup block (0xFFFE0000~0xFFFEFFFF), 
and next set the “TOP_SWAP” enable bit (and BILD bit as well), 
eventually upon the next power-on the first instruction fetched by 
processor at location 0xFFFFFFF0 will be actually redirected to 
0xFFFEFFF0, which then gives our customized codes a chance to 
execute before system BIOS. Comparing with known BIOS execution 
Hijacking techniques, for example replacing some unneeded 
procedure(s) in original.tmp or patching the so-called "POST jump 
table" to include a "jump" into our own procedure, this swap mode 
based method seems more secret, because the original BIOS entry 
point is unchanged, and possibly more generic (here the word 
“generic” means that the Hijacking must be implemented with the 
precondition of not having the knowledge of the type of Mainboard 
chipset, BIOS ROM chip, and BIOS image structure etc), if only the 
backup block is free and not the target of checksum calculating.



Code Injecting Attack (2)
In practice, there are still some technical problems need 
to be resolved first with this code injecting attack 
scheme:

1. The opportunity to perform the customized code flashing into BIOS: It’s not a 
safe and stealthy way to perform flashing in the middle of Windows operating 
system running stage, instead we may adopt a better solution used by IBM BIOS 
update utility (DOSBOOT.sys): Hooks the system shutdown function
“HalReturnToFirmware” exported by HAL.dll, then switch CPU to the real mode 
and perform the flashing right before system shutdown.

2. The transition method from “Top-Block Swap” mode to non-“Top-Block Swap” mode: 
Because usually the BIOS will calculate the checksum of the whole image of 
itself using the high BIOS address other than the low address aliases, we 
have to reset the “TOP_SWAP” bit before transferring control to the original 
BIOS entry point (via RAM as a trampoline), and set it again sometime later 
in our hook routines to avoid the losing control forever.

3. Customized code’s payload: The payload of our customized code is extremely 
limited because it will be executing before the completion of system 
initialization, which means no BIOS services can be invoked to interact with 
VGA and Disk controllers etc, therefore a conceivable solution is to 
implement something like a self-contained mini-BIOS that has enough knowledge 
on the underlying hardware it manages, however which is inevitably hardware-
specific and non-portable.



Prevention Countermeasures

To prevent these kind of abuses (including SMI 
handler and ATA password security issues) we have 
discussed so far in this presentation, there are 
two methods can be applied:

1. For those configuration registers and control commands 
which have relevant locking mechanisms, a third-party pre-
boot software will be applicable to utilize these 
mechanisms to freeze the current settings until the next 
cold boot in case that system BIOS probably hasn’t locked 
them by default. 

2. Deploying a Secure Virtual Machine (SVM) based on modern 
processor’s hardware virtualization support to intercept 
and filter out/emulate those insecure registers 
configuration or device control operations.



PART II: VMware Vulnerabilities Digging

Statement:
This is not a complete and well-written research 
paper, and I don’t plan to disclose any technical 
detail of VMware 0days I have found so far, my 
purpose here is just to provide some ideas about 
client software vulnerabilities digging methods, 
hope that will be helpful for you.

Agenda:
1. VMware Services
2. VMware VMX
3. VMware Drivers
4. VMware Virtual Machine Monitor (VMM)



VMware Services

VMware Services:
DHCP/NAT Service: vmnetdhcp.exe, vmnat.exe
Authorization Service: vmware-authd.exe
Virtual Mount Manager Extended: vmount2.exe
…

Recently Known Vulnerabilities:
CVE-2007-0061: malformed packet, corrupt stack memory.
CVE-2007-0062: malformed DHCP packet, Integer overflow.
CVE-2007-0063: malformed DHCP packet, Integer underflow.
…



VMware Service 0day Demo

Demonstration:
This is a standard local privilege 
escalation vulnerability, which can be used 
to execute ring0 codes or access files that 
normally require higher access rights. 
Under some circumstances, this security 
hole can also be exploited remotely, such 
as from Windows network neighborhood (SMB).



VMware VMX

VMware VMX
vmware-vmx.exe, the user mode virtual machine 
process living in the Host world, which handles 
VMware backdoor invocation and most devices 
emulation.

Recently Known Vulnerabilities:
CVE-2007-4496: SVGA_CMD_DEFINE_CURSOR handler 
integer overflow.
CVE-2007-4497: RPC VMXI_Proxy_Msg subcommand 
0x1f handler infinite loop and read access 
violation.
…



VMware Backdoor
What is “Backdoor”?
The communication between VMware tools installed in Guest world and 
VMware VMX running in the Host world is done by accessing a special 
I/O port specific to the VMware virtual machine.

MOV EAX, 564D5868h /* magic number */
MOV EBX, command-specific-parameter
MOV CX,  backdoor-command-number
MOV DX,  5658h /* VMware I/O Port */

Complete backdoor commands list
http://chitchat.at.infoseek.co.jp/vmware/

Experiment:
Analyze the security of PatchSMBIOS backdoor 
invocation.



VMware VMX 0day Demo

Demonstration:
This is a corrupt memory vulnerability, 
which can be used by an unprivileged Guest 
user to crash the VMware VMX process in the 
Host world or to compromise the Guest OS 
processes or kernel (possibly escalate its 
privilege), however due to some 
restrictions, this vulnerability is only 
conditionally exploitable.



VMware Drivers
VMware Drivers

vmx86.sys
vmnet.sys, vmnetadapter.sys, vmnetbridge.sys
vmusb.sys
…

Open source code in Linux
vmmon
vmnet

Interesting VMX86 IOCTLs that facilitate arbitrary 
memory manipulation and ring0 code execution: 

IOCTL_VMX86_CREATE_VM, IOCTL_VMX86_INIT, IOCTL_VMX86_RUN_VM: 
a fake crosspage,VMM and VM
IOCTL_VMX86_LOOK_UP_MPN, IOCTL_VMX86_LOCK_PAGE, 
IOCTL_VMX86_WRITE_PAGE
…



VMware Virtual Machine Monitor

Where is it?
It resides within VMware VMX (vmware-vmx.exe).

How to dump it?
Access unimplemented devices regions, such as the reserved 
IOAPIC registers, which would make VMM panic and to 
generate a core dump for analysis.

VMware VMM security considerations:
A parasitical Rootkits hidden within VMware VMM, which gets 
executed at ring0 mode in the Guest world.

A feasible way to run ring0 code, which can bypass driver 
signature verification imposed by Vista.



Acknowledgements

Firstly, I have to say that this paper really refer a lot 
to the works of many forthgoers in BIOS R&D field, such 
as the wonderful tutorials by Darmawan, the source codes 
of Uniflash and LinuxBIOS etc, without their great works, 
it was impossible for me to complete this paper so 
smoothly.

Secondly, I would like to thank my friend Icelord who is 
the author of BIOS Rootkits Iclord. The discussions 
between us have helped me resolve some problems, and also 
provided me with many inspirations on technical aspect.

Finally, once again, let me express my most sincere 
thanks to all people who make contributions to this 
presentation!



Thank You For Watching！
Question & Discussion 

Time


