BIOS Boot Hi jacking

And
VMware Vulnerabilities Digging

Sun Bing
taoshaixiaoyao@hotmai |. com
POC2007 Seoul Korea
16th Nov 2007

PARTI: BIOS Boot Hi jacking

In this part, | will disclose a fire—new BI0S Boot hi jacking
method by using the so—called “Top—Block Swap” mode that is
supported by Intel |ICHx series south bridge chips. The “Top-—
Block Swap” mode of ICHx swaps the top block (the Boot Block)
in the Firmware Hub (FWH) with another location, which allows
for safe update of the Boot Block even if a power failure
occurs, however due to a negligence in BIOS designing and
coding, it fails to lock down the swap function before handing
over the control to operating system once Boot phase
successful ly completed, which then makes an original security
mechanism become a severe security hole, a malicious program
can easily exploit this swap function to perform a DOS attacks,
which would lead to a Boot failure of the victim computer, or
to be even worse it may directly inject a piece of customized
codes into the swap block, which enables this codes to gain
execution control even before system BIOS and then to
compromise the whole system.

=
Reset Vector

m When creating an address, CPU only need to add the offset to
the base address located in the invisible part of segment
register, regardless of the current CPU mode — real mode or
protected mode, and when switching from real mode to protected
mode (or being back to real mode from protected mode), the
segment base address, |imit and right attribute will not
change as long as the corresponding segment register has not
been reloaded.

m Right after CPU power—-on, the selector value of CS segment
register is OxFO00, EIP is OxO000FFFO, however the base
address at that time is OxFFFFO000, therefore the first
instruction address executed by CPU is at OxFFFFFFFO (a. k. a.,
Reset Vector) other than OxFFFFO that is computed by the real
mode method (segment register value left shifts 4 bits then
plus the offset), but after the first far jump and CS segment
reloading, the base address will be altered.

'__
Dell D620 (NB 1945 + SB ICH7)

DDR2 SO-L

S
Mobile Infel® 945
Express Chipset

DDR2 66TMHz

intel® HD
AudiolAC 57

T,

x1

‘ pressﬂardi 1
Dockin iy

L 5

| ﬁ 8 ports

FCI

" A
Dell D620 (SB ICH7)

{

—

et

DMI
{To (G)MCH)

~UsB20 Power Management
(Supporis 8 USE pors) L
‘ IDE |— | Clock Generators

SATA (2 ports) Intel® System Managament

ICH7-M (TE0)
ACTTIntEI® High
e SMBus 2.0/12C
= PCIBus :
Dock
PCI Express x1 E,rfd;;g
Cardbus
LAN Connect Contraller (&
attached slots)
i SPI BIOS
f
Other ASICs Lo dr
(Optional) Super /0
TPM :
(Optonal) Flash BIOS

" A
BIOS Memory Address Decoding Map

m Right after machine power—on and the very beginning of the Boot
stage, the E_segment (0xEO000 OxEFFFF) and F_segment
(0OxFO000 OxFFFFF) are not claimed by North Bridge, and all
accesses to these ranges are actually forwarded to South Bridge
and decoded by Firmware Hub (FWH) until subsequently North
Bridge RAM shadowing function will be enabled by BI0S code.

m E segment/F _segment and their counterparts in High BIOS Area
(topmost 2M in the whole accessible 4G physical memory space)
are both decoded by FWH into the last two 64k of BIOS ROM chip,
so we can say that E_segment and F_segment alias to
OxFFFEOOOO OxFFFEFFFF and OxFFFFOO00 OxFFFFFFFF respectively.

m The first instruction that CPU executes upon power—on is at
OxFFFFFFFO (alias to OxFFFFO and both are within BIOS ROM chip)
where usually a far jump instruction resides (mostly JMP
FO00:EO05B, and after this jump CS base OxFFFFOO00 will get
flushed) , so the next instruction will be fetched from OxFEQ5B
(alias to OxFFFFEO5B) which is also decoded into BI0S ROM.

" A
Memory Range Decode Map of [CH7

Memory Decode Ranges from Processor Perspective

Memory Range Target Dependency/Comments
000 C000h—0000 FFFFh
0010 C0O0h—TOM Main Memaory TOM registers in Host controller
[Top of Memaory)
000E OO0D0R—D00E FFFFh Firmware Hub Bit 8 in Firmware Hub Decode Enable register is sat
C00F 0000h-0C0F FFFFh Firmware Hub Bit 7 in Firmware Hub Decode Enable regisier is sat
110 APIC inside
= i) 04
FECO D000h—-FECO 0100h Intel® ICHT
FED« D0OD0Oh—FED+ OFFFh TPM on LPC
FFCO 0000h—FFCT FFFFH i |
= o Flrmw;re .|_1|Ub LAk Bit 8 in Firmware Hub Decode Enable register is set
FF80 0000h-FFBT FFFFh Cl)
FFCE 0000h—FFCF FFFFR irrmy [
5 i Flrm.\'ire .|_1|"'"'-r Lar Bit & in Firmware Hub Decode Enable register is set
FF85 0000h—FFEF FFFFh BCl)
FFDO 0000h—FFDT FFFFH irrm (
i Flrmn'gre .I—1|ub Lar Bit 10 in Firmmware Hub Decode Enable register is set
FFO0 0000R—FF27 FFFFR PCI)
FFD2 0000h—FFDF FFFFR i [
EQ:IE-E-:I:Ih—FF'EIF FFEER Flrmw:rcel:ﬁub o Bit 11 in Firmware Hub Decode Enable register is set
FFED 000h—FFET FFFFh i (
i S et Flrmwgm .|_1|Ub el Bit 12 in Firmware Hub Decods Enable register is s=t
FFAD 0000h-FFAT FFFFR FCl)
FFES 0000h—FFEF FFFFR i : |
FFAZ D000h—FFAF FEFFh Flrm-.u.;rcel:ﬁub il Bit 13 in Firmware Hub Decode Enable register is sat
FFFC 0000h—FFFT FFFFh i : (
_ 'I_ A Flrm-.u;re .|_1|u'} 5 Bit 14 in Firmware Hub Decods Enable register is sat
FFBO 0000R-FFET FFFFh =
F FEFF F . i Always enabled.
FFF& D000h—FFFF FFFFh
= b L F'r”“‘“gre l_-||"'"'_" hen The top twao, 84 KB blocks of this range can be
FFBS 0000h-FFBF FEFFh cl) i gy
FF70 00D0h—FFFF FFFFh i (
_ _ Flrmw;rf .I-1|ul::- L) Bit 2 in Firmware Hub Decode Enable register is set
FF30 C0D0h—FF3F FFFFh k)
FF&0 0000h-FFSF FFFFh i |
_ _ Flrmw;rf .|_1|Ut} i) Bit 2 in Firmware Hub Decode Enable regisier is set
FF20 0000h—FF2F FFFFh Pl
FF50 0000h—FFSF FFFFh Firmware Hub (or S _ _)]
EF10 D000h—FE1F FFEFh .='CI]1 Bit 1 in Firmware Hub Decode Enable register is set
FF40 0000h-FF4F FFFFQ i ‘
e i Flrmw;re .|_1|"|"-r War Bit 0 in Firmware Hub Decode Enable register is set
FFO0 C000h-FFOF FFFFh el

" A
The Working Principle of Swap Mode

m The Intel ICHx series South Bridge (since ICH2) supports a
“Top—Block Swap” mode that has the |CHx swap the top block in
the Firmware Hub (the Boot Block) with another location, which
allows for safe update of the Boot Block even when a power
failure occurs. When the “TOP_SWAP” Enable bit (BUC.TS) is set,
the ICHx will invert the 16th bit of address line A16 for
cycles targeting Firmware Hub space, in this way processor
accesses to OxFFFFO000 OxFFFFFFFF will be directed to
OxFFFEOOOO OxFFFEFFFF in the Firmware Hub, and vice versa, and
this bit can only be cleared by a RTCRST# (Real Time Clock
Reset Signal). Moreover ICHx also provides a BI0S Interface
Lock—Down bit (GCS.BILD) to prevent “TOP_SWAP” bit from being
altered, and a Top Swap Status bit (BIOS CNTL.TSS) as well to
view the current status of Top Swap bit. One thing should be
noticed is that the Swap mode has no effect on accesses below
OxFFFEQO0OO.

" J
Top—Block Swap Enable Bit

BUC—Backed Up Control Register

Offset Address: 3414-3414h Attribute: RW
Default Value: 0000000xb (Desktop Only) Size: 8-bit

0000001xb (Mobile Only)

All bits 1n this register are in the RTC well and only cleared by RTCRST#.

Bit

Description

73

Reserved

CPU BIST Enable (CBE) — RAW. This bit is in the resume well and is reset by RSMRST#, but not
PLTRST# nor CF9h writes.

0= Disabled.
1= The IMIT# signals will be driven active when CPURST# is active. INIT# and INIT3_3V# will

go inactive with the same timings as the other processor UF signals (hold time after
CPURST# inactive).

1
(Mobile
Only)

PATA Reset State (PRS) — R/W.
0 = Disabled.
1= The reset state of the PATA pins will be driven/iri-state.

1
(Deskiop
Only)

Reserved

Top Swap (TS) — RW.

0= Intel® ICHT will not invert A15.

1="ICHT will invert A416 for cycles going to the BIOS space (but not the feature space) in the
FWH.

If the ICHY is strapped for Top-Swap (GMT3# is low at rising edge of PWROK), then this bit

cannot be cleared by software. The strap jumper should be removed and the system rebooted.

" A
BIOS Interface Lock—Down Bit

GCS—General Control and Status Register

Offset Address: 3410-3413h Attribute: R/W, R/YWLO
Default Value: 00000yy0Oh (yy = xx0000x0b)Size: 32-bit
Bit Description

Mo Reboot (NR) — R/W. This bit is set when the "No Reboot” strap (SPKR pin on

ICH9) is sampled high on PWROK. This bit may be set or cleared by software if the

strap is sampled low but may not ocverride the strap when it indicates "No Reboot™

0 = System will reboot upon the second timeout of the TCO timer.

1 = The TCO timer will count down and generata the SMI# on the first timeout, but
will not reboot on the second timeout.

Alternate Access Mode Enable (AME) — R/W.

0 = Diszbled.

1 = Alternate access read only registers can be written, and write only registers can
be read. Before entering a low power state, several registars from powsared down

4 parts may need to be saved. In the majonty of cases, this is not an issue, as

registers have read and write paths. However, several of the I1SA compatible

registers are either read only or write only. To get data out of write-only

registers, and to restore data into read-only registers, the ICH implements an

alternate access mode. For a list of these registers ses Section 5.13.9.

Shutdown Policy Select (SPS) — R/W. When cleared (default), the ICHD will drive
INIT# in response to the shutdown Vendor Defined Message (VDM). When set to 1,

z ICHS will treat the shutdown VDM similar to receiving a CF2h I/O write with data
value06h, and will drive PLTRST# active.
Reserved Page Route (RPR) — R/W. Determines where to send the reserved page
registers. These addresses are sent to PCI or LPC for the purpose of generating POST
codes. The IJO addresses modified by this field are: 80h, 84h, 85h, 86h, 88h, 8Ch,
8Dh, and 8Eh.
0 = Writes will be forwarded to LPC, shadowed within the ICH, and reads will be

returned from the internal shadow

1 = Writes will be forwarded to PCI, shadowed within the ICH, and reads will be

2 returned from the internal shadow.
Mote, if some writes are done to LPC/PCI to these I/0 ranges, and then this bit is
flipped, such that writes will now go to the other interface, the reads will not return
what was last written. Shadowing is performed on each interface.
The zliases for these registars, at 90h, 94h, 95h, 96h, 98h, 9Ch, 90h, and 9Eh, ars
always decoded to LPC.

1 Reserved
BIOS Interface Lock-Down (BILD) — R/WLO.

a 0 = Disablaed.

1 = Prevents BUC.TS [offset 3414, bit 0) and GCS.BBS (offset 3410h, bits 11:10)
from being changed. This bit can only be written from 0 to 1 once.

" A0
Swap Mode Based BI0OS Safe Update Scheme

| This BIOS uEdate scheme is based on the concept that the top block
(OxFFFFO000 OxFFFFFFFF) is reserved as the “boot” block, and the block
immediately below the top block (OxFFFEO000 OxFFFEFFFF, “swap” block)

is reserved for doing boot—block updates. The algorithm is:

1. Software copies the top block to the block immediately below the top.

N

Software checks that the copied block is correct. This could be done by
performing a checksum calculation.

Software sets the TOP_SWAP bit, enable the A16 address bit inversion.
Software erases the top block.

Software writes the new top block.

Software checks the new top block.

Software clears the TOP_SWAP bit.

Software sets the Top Swap Lock—-Down bit.

© N Ok w

| |f a power failure occurs at any point after step 3, the system will be
able to boot from the copy of the boot block that is stored in the
block below the top. This is because the TOP_SWAP bit is backed in the
RTC well.

" A
The Exploitation of Swap Mode

m Because most BIOS codes fail to lock down the swap
function by setting the BIOS Interface Lock—Down
bit in ICHx South Bridge before transferring
control to operating system after Boot process
finished, a malicious program may therefore exploit
this security hole to perform a DOS or code
Injecting attack against the victim host.

m Demonstration: View the result of
address inversion under Top Swap mode.

DOS Attack

Only setting “TOP_SWAP” enable bit but not preparing a proper boot code at
the location of backup block (the second 64k block below the top of 4G
physical memory space) would lead to a kind of DOS attack which results

in the boot failure of the victim computer until having discharged its
CMOS, the reason is that once set, the “TOP_SWAP” enable bit will be kept

permanently within the RTC register until a signal of RTCRST# asserted.

void enable top swap ()
{
unsigned long prcba, gcs;
void *p;
prcba = retrieve rcba() ;
p = MapPhysicalAddressRange (prcba + 0x3410, 0x10) ;
gcs = *(unsigned long*)p;
// test GCS.BILD bit
if ('(gecs & 1))
{
// not locked, set BUC.TS
*((unsigned char¥)p + 4) |= 1;
}
UnmapPhysicalAddressRange (p, 0x10) ;
return;

" B
Code Injecting Attack (1)

m \We can achieve an easy BIOS Boot Hijacking with the support of
“Top-Block Swap” mode: Firstly, try to write (BIOS flashing) our
customized codes into the backup block (OXFFFEOOOO~OxFFFEFFFF),
and next set the “TOP_SWAP” enable bit (and BILD bit as well),
eventually upon the next power-on the first instruction fetched by
processor at location OxFFFFFFFO will be actually redirected to
OxFFFEFFFO, which then gives our customized codes a chance to
execute before system BIOS. Comparing with known BIOS execution
Hijacking techniques, for example replacing some unneeded
procedure(s) In orlglnal tmp or patching the so-called "POST jump
table" to include a "jump" into our own procedure, this swap mode
based method seems more secret, because the original BIOS entry
point is unchanged, and possibly more generic (here the word
“generic” means that the Hijacking must be implemented with the
precondition of not having the knowledge of the type of Mainboard
chipset, BIOS ROM chip, and BIOS image structure etc), if only the
backup block is free and not the target of checksum calculating.

~
Code Injecting Attack (2)

B |In practice, there are still some technical problems need
to be resolved first with this code injecting attack
scheme:

1. The opportunity to perform the customized code flashing into BIOS: It's not a
safe and stealthy way to perform flashing in the middle of Windows operating
system running stage, instead we may adopt a better solution used by IBM BIOS
update utility (DOSBOOT. sys): Hooks the system shutdown function
“HalReturnToF irmware” exported by HAL.dl |, then switch CPU to the real mode
and perform the flashing right before system shutdown.

2. The transition method from “Top—Block Swap” mode to non—“Top—Block Swap” mode:
Because usually the BIOS will calculate the checksum of the whole image of
itself using the high BIOS address other than the low address aliases, we
have to reset the “TOP_SWAP” bit before transferring control to the original
BI0S entry point (via RAM as a trampoline), and set it again sometime later
in our hook routines to avoid the losing control forever.

3. Customized code’s payload: The payload of our customized code is extremely
| imited because it will be executing before the completion of system
initialization, which means no BIOS services can be invoked to interact with
VGA and Disk controllers etc, therefore a conceivable solution is to
implement something |ike a self-contained mini—B10S that has enough knowledge
on the underlying hardware it manages, however which is inevitably hardware-
specific and non—portable.

» B
Prevention Countermeasures

m To prevent these kind of abuses (including SMI
handler and ATA password security issues) we have
discussed so far in this presentation, there are

two methods can be applied:

1. For those configuration registers and control commands
which have relevant locking mechanisms, a third-party pre-
boot software will be applicable to utilize these
mechanisms to freeze the current settings until the next
cold boot in case that system BI0OS probably hasn't |ocked

them by default.

2. Deploying a Secure Virtual Machine (SVM) based on modern
processor’'s hardware virtualization support to intercept
and filter out/emulate those insecure registers
configuration or device control operations.

" A
PART I1: VMware Vulnerabilities Digging

m Statement:

This 1s not a complete and wel l-written research
paper, and | don’t plan to disclose any technical

detail of VMware Odays | have found so far, my
purpose here is just to provide some ideas about
client software vulnerabilities digging methods,
hope that will be helpful for you.

m Agenda:
1. VMware Services
2. VMware VMX
3. VMware Drivers
4. VMware Virtual Machine Monitor (VMM)

VMware Services

m VMware Services:
» DHCP/NAT Service: vmnetdhcp. exe, vmnat. exe
» Authorization Service: vmware—authd. exe
» Virtual Mount Manager Extended: vmount2. exe

> ...

m Recently Known Vulnerabilities:
» CVE-2007-0061: malformed packet, corrupt stack memory.
» GVE-2007-0062: malformed DHCP packet, Integer overflow.

» GVE-2007-0063: malformed DHCP packet, Integer underflow.
> ...

" SN
VMware Service Oday Demo

m Demonstration:

This i1s a standard local privilege
escalation vulnerability, which can be used
to execute ring0 codes or access files that
normally require higher access rights.
Under some circumstances, this security
hole can also be exploited remotely, such
as from Windows network neighborhood (SMB).

"
VMware VMX

m VMware VMX

vmware—vmx. exe, the user mode virtual machine
process living in the Host world, which handles
VMware backdoor invocation and most devices
emulation.

m Recently Known Vulnerabilities:

» GVE-2007-4496: SVGA CMD DEFINE CURSOR handler
Iinteger overflow.

» CVE-2007-4497: RPC VMX| Proxy Msg subcommand
Ox1f handler infinite loop and read access
violation.

> ...

" S
VMware Backdoor

m What is “Backdoor”™

The communication between VMware tools installed in Guest world and
VMware VMX running in the Host world is done by accessing a special
|/0 port specific to the VMware virtual machine.

MOV EAX, 564D5868h /* magic number */
MOV EBX, command—specific—parameter

MOV CX, backdoor—command—number
MOV DX, 5658h /* VMware |1/0 Port */

m Complete backdoor commands |ist
http://chitchat. at. infoseek. co. jp/vmware/

m Experiment:

Analyze the security of PatchSMBIOS backdoor
Invocation.

" SN
VMware VMX Oday Demo

m Demonstration:

This 1s a corrupt memory vulnerability,
which can be used by an unprivileged Guest
user to crash the VMware VMX process in the
Host world or to compromise the Guest 0S
processes or kernel (possibly escalate its
privilege), however due to some
restrictions, this vulnerability is only
conditional ly exploitable.

I
VMware Drivers

m VMware Drivers
> vmx86. sys
> vmnet. sys, vmnetadapter. sys, vmnetbridge. sys
> vmusb. sys
> ...

m Open source code in Linux
> vmmon
> vmnet

m Interesting VMX86 [0CTLs that facilitate arbitrary
memory manipulation and ring0 code execution:

> |OCTL _VMX86 CREATE VM, I10CTL_VMX86 INIT, I10CTL_VMX86 RUN _VM:
a fake crosspage, VMM and VM

> |0CTL_VMX86_LOOK_UP_MPN, 10CTL_VMX86_LOCK_PAGE,
|OCTL_VMX86_WRITE_PAGE

> ...

VMware Virtual Machine Monitor

m Where is 1t?

|t resides within VMware VMX (vmware—vmx. exe) .

m How to dump it?

Access unimplemented devices regions, such as the reserved
|OAPIC registers, which would make VMM panic and to
generate a core dump for analysis.

m VMware VMM security considerations:

> A parasitical Rootkits hidden within VMware VMM, which gets
executed at ring0 mode in the Guest world.

> A feasible way to run ring0 code, which can bypass driver
signature verification imposed by Vista.

" BN
Acknow | edgements

m Firstly, | have to say that this paper really refer a lot
to the works of many forthgoers in BIOS R&D field, such
as the wonderful tutorials by Darmawan, the source codes
of Uniflash and LinuxBIOS etc, without their great works,
It was impossible for me to complete this paper so
smoothly.

m Secondly, | would like to thank my friend lcelord who is
the author of BIOS Rootkits Iclord. The discussions
between us have helped me resolve some problems, and also
provided me with many inspirations on technical aspect.

m Finally, once again, let me express my most sincere
thanks to all people who make contributions to this
presentation!

Thank You For Watching!
Question & Discussion
T ime

