Software Virtualization Based Rootkits

ABSTRACT

The most popular virtual execution technologies include pure
emulator, APl emulator and virtual machine, the typical representations of
al these three technologies are Bochs, Wine and VMware respectively.
The implementation of virtual machine could be divided into two
categories by the virtuaization extent employed, those are full
virtualization and para-virtualization, the latter has come up and been
used in most recent years; the “para” means making some assumptions
about or doing some modifications on the Target OS. In addition,
according to the difference of virtual machine monitor(VMM)’s structure,
there are type | and type Il VMM, and the type Il could be referred to as
the hosted VMM as well. As the virtualization technology continues
developing and becomes more prevalent, the two biggest processor
manufacturers in the world both have developed their new CPU
technologies which support virtualization, the Intel VT-x and AMD
Pacifica. However, all of the following discussion will still aim at the
traditional x86 platform as that is by far the most widely used. The
virtualizable processor architecture requires that all the sengtive

instructions could be trapped when running with the degraded privilege



level. Unfortunately there exists a few non-virtualizable instructions that
make x86 a non-strictly virtualizable architecture. In order to achieve the
full virtualization of x86, some extremely complicated software
techniques should be used to overcome these architectural limitations.
Being an excellent virtual machine software product, VMware has
implemented the full virtualization of x86. We take the VMware
Workstation version as an example to give a brief introduction about the
architecture, basic working principle and some core technologies used of
the type Il VMM. As a hosted structure, there are two OS contexts, the
host and the guest, so VMware must use the total context switch method
to ensure necessary execution environment isolation. VMware uses
privilege compression and dual execution modes (direct execution and
binary trand ation) to virtualize the instruction execution part of x86 CPU.
Direct execution with ring degradation would let a magjority of common
instructions run natively, and trap most of the sensitive ones at the same
time. However, the binary trandator would be used to deal with the
non-virtualizable instructions. The execution mode selection will be made
by the appropriate decision-making module which depends on the CPU’s
current mode, privilege level and segment state. It is worthy to point out
that binary trandation is a very complicated but useful software technique
which is also referred to as dynamic recompilation. Besides the fact that

the code generation is highly difficult and complex, it will also handle the



translation cache’s synchronization and coherency. However, another
technique, used by Plex86, that solves the same problem seems much
simpler, which should be a good choice for implementing a light weight
VMM. In addition to virtualizing the instruction execution part, VMware
aso applies some other techniques to virtualize the CPU’s segmentation,
paging and interrupt/exception system components, such as deferred
shadow segmentation, shadow paging and interrupt/exception forwarding.
As to device virtualization, VMware chooses the method of full
emulation which provides a complete set of virtual devices that are totally
different from the true hardware devices. Since the device emulation
depends completely on how each given hardware device works, the
Implementation method varies.

At present, the virtualization technology has been widely used in
many computer related fields, but the research and application of
virtualization on the security area is till in an elementary date.
Virtualization technology could be applied to developing a non-intrusive
debugger, a honey pot that traps malicious programs, and VM Based
Rootkits. The Microsoft research team working together with Michigan
University has developed a VM Based Rootkit prototype named SubVirt.
SubVirt could gain system control after the Target OS was infected and
rebooted. SubVirt then made the Target OS run within the context of a

VM, while SubVirt itself would run directly on the true hardware.



SubVirt could control the behavior of the target system viaa VMM and
provide some malicious services externally. However some inherent and
obvious defects of SubVirt greatly reduced its practicality. Finally, as the
most key part of the presentation, we will discuss the complete technical
scheme of a novel VM Based Rootkit. The VMBR itself is sort of light
weight VMM. After the VMBR is loaded, the VMBR will ensure the
target system is still running by placing it into a rootkit created virtua
execution environment. It then becomes very difficult for the victim to
perceive the rootkits’ presence or to find any virtualization footprint.
Although this novel VMBR is just a proof of concept, it has at least

achieved the coexisting transparently and perfectly with the target system.
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Chapter 1 Introduction

1.1 Popular “Virtual Execution” Techniques

1.1.1 Pure Emulator

Pure Emulator simulates all the necessary components which congtitute a
complete computer system by using a pure software method, including the processor
and all hardware equipments, and its processor part is very similar to theway in
which the compilation and execution environments of some interpreted high-level
languages (Visual Basic, Java) work, which cycle for fetching instructions, decoding
and executing them. Pure Emulator has the advantage of good portability, the target
(smulated) platform and actual execution platform can be heterogeneous, its
disadvantage is poorer performance. The typical representative is Bochs

(http://www.bochs.com).

1.1.2 API Emulator

The function of APl Emulator is to allow binary code of applications compiled
for an operating system to run directly on another operating system, its working
principle isto intercept the API invokations issued by applications and use the API of
current operating system to simulate them. The merits of APl Emulator are the
application binary compatibility between operating systems, and better performance,
but the drawbacks here are that this method relies on the internal implementations of
specific operating systems, and poor generality and portability. The typical
representative is Wine (http://www.winehg.com).

1.1.3 Virtual Machine

Theinitial goal for designing aVirtual Machine is to run several operating
systems concurrently, its working principleislittle bit similar to the above Pure


http://www.bochs.com
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Emulator: it uses the pure emulation method for hardware devices, and direct
execution plus emulation (binary translation) for processor part, that’s namely one
kind of Quasi-Emulation technology, which lets most of instructions run naturally on
the hardware processor, but captures and emulates a small part of incompatible
(sensitive) instructions by a Virtual Machine Monitor. The merit of Virtual Machine is
the better performance, however the shortcoming is the poor portability, also it
requires that the target (virtuaized) platform to be the same as the actual execution
platform. The typical representative is VMware (http://www.vmware.com), Plex86

(http://www.plex86.org, actually the new Plex86 belongs in Para-Virtualization, and

can only supports Linux asits Guest OS).

1.2 Full Virtualization vs. Para-Virtualization

Full Virtualization means virtualizing all features of the processor and hardware
devices. The typical representatives that use Full Virtualization include IBM VM/370,
VMware €tc.

Due to some restrictions of processor architecture, for example x86 includes
some non-virtualizable instructions, it isimpossible to achieve Full Virtuaization
without using binary translation system or hardware virtualization support. Under
such circumstances, the so-called Para-Virtualization appears, Para-Virtudization
means to do some gppropriate modifications on the target operating system, such as
getting rid of those non-virtualizable instructions and using customized 1/0
communication protocols, which then can reduce the complexity of VMM
implementation and also enhance the performance. But Para-Virtualization technique
also exists some shortages, for example it can not be used in a non-open-source
operating system (such as Windows) , also modifications might be intrusive to target
operating system and so on. Owing to this VMware company puts forward akind of
standard called Virtual Machine Interface (VMI) API, every operating system that
follows thisinterface can not only run naturaly, but can also run in aParaVM, and
without the need of kernel recompilation, this standard isin fact akind of transparent
Para-Virtuaization. The typical representatives which use Para-Virtualization include
Xen, Dendli.

1.3 Virtua Machine Monitor (VMM)
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131 Typel VMM

Typel VMM refersto that the VMM runs directly on hardware (Bare Machine),
and actually it can be seen as an operating system with virtualization mechanism,
which isresponsible for its Virtual Machines (VM) scheduling and resource
allocation. The typical representative of Type | VMM isVMware ESX Server. The
diagram of Typel VMM is shown as follows:

Applications Applications

Operating System Operating System

Virtual Machine Virtual Machine

Virtual Machine Monitor

Physical Machine

Diagram 1—1 Type | VMM

1.3.2 Typell VMM

Typell VMM isdso referred to as Hosted VMM, the VMM itself runs as an
application program in host operating system (Host OS), which manipulates hardware
devices directly and is responsible for creating virtual execution environment and
allocating resources for the guest operating system (Guest OS). By using Total
Context Switch technique, Host OS and Guest OS each lives in their own isolated
world, however the emulation of Guest OS device I/O operations is accomplished by
some virtual machine software runsin Host world by making use of its facilities (AP
and Device Driver etc). The typical representative of Typell VMM isVMware
Workstation. The diagram of Type Il VMM is shown as follows:
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Diagram 1—2 Type Il VMM

1.4 Hardware Based Virtualization Techniques

The two new processor techniques, Intel VT-x (Vanderpool & Silverdale) and
AMD Pacifica, are enhancementsto traditional processors to support software
virtualization. Initially, they are mainly concentrated in handling those
non-virtualizable ingructions, and do not provide virtualization schemes for al
processor components. The main feature is the introduction of a new CPU privileged
root mode for the use of VMM itself, and non-root mode for Guest OS. In addition,
they also provide some special VM ingructions for switching and controlling VM
(such as vmlaunch/vmrun, vmresume, vmexit/'vmmecall, vmread, vmwrite etc.), and
data structures used to savel restore the state of Guest OS (VM CS and VMCB) as
well. AMD Pacifica seems to go further on the road of hardware based virtualization,
which can support SMM (System Management Mode) and SM1 (System Management
Interrupt), and use the NPT (Nested Page Table) and DEV (Device Exclusion Vector)
technologies to achieve memory virtualization and DM A protection.

If readers are interested in these rising technologies, please find related
documents for more technical information by yourself.

1.5 Virtualize x86

15.1 The Standards of Virtualizable Processor Architecture



R. Goldberg put forward 4 requirements of the third generation hardware
architecture suitable for virtual machine in his doctoral dissertation << Architectural
Principles for Virtual Computer Systems >> in 1972:

1. At least two processor privilege modes.

2. A method used by non-privileged program to invoke privileged system
routines.

3. Memory relocation or protection mechanism, such as segmentation or paging
system.

4. Asynchronous interrupt mechanism, which allows the communication
between 1/0 system and CPU.

x86 meets R. Goldberg's requirements well:

Lo

4 privilege modes (rings 0~3).
2. Interrupt Gate, Call Gate etc.
3. Segmentation and Paging.

4. Interrupts and Exceptions.

John Scott Robin and others gave further standards about virtualizable processor
architecture in the paper << Analysis of the Intel Pentium’s Ability to Support a
Secure Virtual Machine Monitor >> :

1. The execution manner of non-privileged instructions are almost identical in
two modes, the user mode and the privileged mode, no distinguishing instruction
words or extrabits in instruction address part must be used in privileged mode by
CPU.

2. Having protection mechanism or address translation system to isolate and
protect the real machine from the virtual one (or between several virtua machines).

3. When the Virtual Machine tries to execute sensitive instructions, the Virtual
Machine Monitor have to be notified automatically, and it must be able to emulate the
results of those instructions.

The sensitive instructions include:

a. Instructionsthat attempt to modify or reference the VM operation mode or
machine state.

b. Instructionsthat read or change the sensitive registers and/or specific
memory regions, such as clock and interrupt register.



c. Instructions that access storage protection system, memory system or address
relocation system, which will allow VM to access any address that beyond its own
virtual memory.

d. Alll/Oinstructions

x86 amost meets the requirements mentioned above:

1. No differencesin execution manner of non-privileged instruction exist
between privilege modes, however the execution results might be slight different,
such as popf.

2. Segment and page based protection system.

3. By lowering the running privilege level of VM Operating System (VMOS),
the exception handler of VMM can trap and emulate most of the sensitive instructions,
which means most sensitive instructions are privileged. Unfortunately, however, there
are some sensitive but non-privileged ones (violate 3b, 3c), which makes x86 a
non-strictly virtualizable architecture.

15.2 The Challenges On x86 Virtualization

1521 Limitations From Hardware and Processor

Hardware: usually be designed to be controlled exclusively by only one device
driver, otherwise it may result in hardware state confusion and inconsistency.
x86 processor: its system features part are designed to be configured and used by
only one operating system. In addition, there also exist some other problems as
follow:
=2 Tight-coupled between some non-strictly related mechanisms: there exists a
very close coupling between the privilege level and segment mechanisms,
the RPL and DPL are contained respectively in segment selector and
segment descriptor which are both manipulated directly by CPU. Thusthe
VMM has no chance to interpose timely and perform emulation and
therefore may expose potentially to the VMOS the fact that its privilege
being lowered.
= Hidden part of segment registers: All 6 segment registers contain hidden
information, such as segment base address, length, and privilege level, and
these concealed information will be flushed only upon segment reloading.



=2

When segment descriptors in memory being modified but without atimely
segment reloading, then appears the so-called segment inconsistent or
irreversible problem. At this time an interrupt/exception occurred which
trapsinto VMM will result in the total loss of the hidden information, then
the VMM will not be able to emulate segment related ingtructions correctly,
and also VMOS may not be restored running.

Non-trapped sensitive instructions: such as popf, pushf, sgdt, sdt, sidt.

1522 Sendgtive x86 Instructions List

The following isthe incomplete list of the sensitive instructionsin x86

architecture, and most of them are privileged instructions:

=2

NN NNNNNNNNNNNNNNNNNNNN

cts

hit

in

ins

out

outs

[gdt

lidt

[ldt

Imsw

Itr

mov r32, CRx
mov CRX, r32
mov r32, DRx
mov DRX, r32
popf/popfd
pushf/pushfd
cli

sti

sgdt

sidt

ddt

smsw



ldg/led/Ifs/lgIss
mov r/m, Sreg
mov Sreg, r/m
push Sreg

pop Sreg
sysenter
sysexit

invipg

invd

whinvd

rdmsr

wrmsr

rdpmc

NN NNNNNNNNNNNNNNNNNN

rdtsc
Because of the restriction of paper length, for more details readers have to make
reference to Intel instruction manual by themselves.

1523 Non-trapped Sensitive x86 InstructionsList

Most of the non-trapped sensitive ingtructions are segment or flags bits related
instructions:

=2 lar/lsl/verr/verw: the results of execution will depend on CPL and RPL value
of target segment selector, and lar/Isl might reveal the changes of segment
access right and limit.

= ggdt/sidt/ddt/str: reveal the changes of GDT/IDT base, length and LDT/TSS
selector value.

=  gmsw: expose some critical flag bitsin CRO, such as PE bit.

=2 popf/popfd: can modify some critical flag bitsin EFLAGS, also the

execution results will depend on current processor mode and privilege level



N

N NN

=2

(CPL and I0OPL), and can not be trapped in protected mode.

pushf/pushfd: expose some critical flag bitsin EFLAGS, such as IF, IOPL
bit etc.

mov r/m, Sreg: reveal the changes of RPL value in segment selectors.
mov Sreg, r/'m

push Sreg: reveal the changes of RPL value in segment selectors.

pop Sreg

In addition, 1/0 and control transfer instructions are also closely related to

=2

=2

=2

virtualization topic, so deserve athorough discussion.

in/ing/out/outs
sysenter/sysexit
cal/jmp/int n/ret/iret

An in-depth analysis of these non-virtualizable instructions will be given in the
following sections which deal with the complete technical scheme of VM Based
Rootkit.

1.6 Related Concepts and Terminologies

Host OS: the Host Operating System of Type Il VMM, which takes charge
of creating virtual execution environment and resource allocation for Guest
OS.

Guest OS: the Guest Operating System of Type Il VMM (in narrow sense),
which runs within the VM and is under the control of VMM.

VM: Virtual Machine, the virtual execution environment that hosts the Guest
OS.

VMM: Virtual Machine Monitor, the software component used to achieve
virtual machine hardware abstract.

Hypervisor: the software that runs directly on the underlying hardware, with
the responsibilities for lodging and managing the VMs, it usually refer in
particular to Typel VMM.

Non-virtualizable I nstruction: those instructions existed in some processor
architectures, which are either sensitive or behave differently under different
privilege level, but both don’t incur traps.

Segment Inconsistent Problem: also known as Segment Irreversible Problem,

9



which means that the current processor operation mode is different from the

mode when segment being loaded, or the hidden information in segment

register is not the same with the current values of segment descriptorsin

memory. Because the VMM must handle the interrupt/exception

transparently, however the occurrence of interrupt/exception will result in

the segments switch and then the flush of concealed contents in segment

registers, thus if those segments are in the irreversible states to the moment,
VMM will be unable to restore them.

1.7 VMware’s Working Principle

The following picture depicts the whole structure of V Mware Workstation:
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Diagram 1—3 The Whale Structure of V Mware Workstati on

Here | will not plan to spend a mass of words to describe the detailed working

principle of VMware, which should be your own work. However there are some

important points as follows you must be clear, which also help to understand how a
VM Based Rootkit works:
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1. Tota Context Switch: Total Context Switch differs with ordinary Process
Context Switch in that it will save and restore all context information of a given
processor, which include address space state, genera purpose registers set, floating
registers, privileged registers (control registers, segment descriptors table register),
interrupt/exception vectors etc. After switch, Host OS and Guest OS/VMM (in order
to control and manage the execution of Guest OS and make the switching back
possible, VMware mapsits VMM module into Guest context, which isinvisible and
non-influential to Guest OS) each livesin an isolated and independent world, and
there is no easy way to let the processor go back to another context’s instruction path,
in order to do this, VMware uses a “span page” in memory, which keeps the same and
starts at the same linear address in both contexts. “Span page” contains a set of
instruction sequence specific to a given processor architecture, which achieves the
address space switching and allows the processor to continue executing its next
instruction. Guest OS'VMM just occupies the VM ware application’s time quantum to
run for awhile in Guest world, and VMM must yield the control voluntarily and
switch back to Host world according to the clock frequency programmed by Host OS,
so that other applications in Host OS may get chances to be scheduled.

2. x86 Processor Virtuaization: To virtualize x86 instruction execution,
VMware basically uses two critical techniques: the privilege (ring) compression and
the dual execution modes (direct execution and binary trand ation). After the running
privilege being lowered, most privileged instructions issued by Guest OS will incur
exceptions (#GP), then VMware will have chance to handle them with itsown IDT,
exception handler and privileged instruction emulation module. Because there exists a
few number of non-virtualizable instructions in x86 architecture, the only using of
direct execution seems not adequate, as a necessary complement of direct execution,
the binary trandlator will be applied in some cases. The execution mode decision
process will depend on current processor mode, privilege level and segment state
comprehensively. VMware doesn’t use binary trand ation under Guest user mode for
performance consideration, which has become aleak used to detect VM presence by
some malicious codes. As to other components and mechanisms of x86 processor,
such as segmentation, paging, task, interrupt/exception etc, VMware also involves
some sub-modulesin its VMM to virtualize them, for example the MMU emulation
module 516 isfor virtualizing the x86 paging system by using a very complex but
interesting shadow paging technique.

11



3. Hardware Devices Virtualization: The device emulation could be divided into
two kinds: those without the need to interact with rea physical deviceswill be
emulated directly by VMM in Guest world, such as the access to state or latched data
ports, on the other hand all device operations which need to access the real devices
must be forwarded to device emulator software in Host world via a context switch,
and emulated by using the Host OS’s facilities. In addition, all hardware interrupts
occurred in Guest/VVMM context do not belong to Guest OS, under such case the
VMM must make a switch back immediately and fake thisinterrupt in Host world as
if it happens here just now.

12



Chapter 2 Implementation of aVM Based Rootkit

2.1 Previous Works

Asfar as| known, there do exist VM Based Rootkits by using AMD and Intel’s
processor virtualization enhancements (AMD Pacifica & Intel VT-x), which have
been demonstrated in Black Hat USA this year, but Hardware Virtualization Based
Rootkit is definitely not my concern here.

The Microsoft research team working together with Michigan University has
developed a Software VM Based Rootkit prototype named SubVirt. SubVirt could
gain system control after the Target OS was infected and rebooted. SubVirt then made
the Target OS run within the context of aVM, while SubVirt itself would run directly
on the true hardware. SubVirt could control the behavior of the target sysem viaa

VMM and provide some malicious services externally.

target target
application application

Before infection ]
target operating system

host hardware |

After infection

o HE N BN BN BN =N HE EN BN BN B BN O o,

targel target 1
application application 1
malicious malicious .
; s target operating system ¥
service service

'---_---r--'-----
virtual-machine monitor ( VMM )

host operating system

host hardware

Diagram 2— 1 The Working Principle of SubVirt

As aprototype of Software VM Based Rootkit, SubVirt has brought forward a
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kind of very novel and challenging concept, however some inherent and obvious

defects of it greatly reduce its practicality:

= Firdtly, it depends on large commercial VM software (VMware with source

code not opened or VPC) and a supporting Host OS (Linux), which make

itself too big and not easy for spreading out.

= Secondly, it requires to modify hard disk MBR and insert itself to system

Boot sequence, but the consistency of system Boot code could be ensured

easily by using some TPM or secure Boot software.

=2 Finaly, VM software will provide atotaly different set of virtual devices,

which reguires re-ingtallation of affected device drivers and thus alows the

Target OS being infected to be aware of the device changes.

As the most important part, we are going to discuss the complete technical
scheme of anovel VM Based Rootkit (VMBR) next, which can overcome all
shortcomings of SubVirt listed above. Actually thisVMBR itself is sort of alight
weight VMM, that means no binary translation or dynamic scanning methods used,

and no immoderate assumptions, requirements and modifications made on Target OS.

After being loaded, the VMBR will ensure the target system is still running by placing

it into arootkit created virtual execution environment. It then becomes very difficult

for the victim to perceive the rootkits’ presence or to find any virtualization footprint.

In addition, the VMBR may exercise various interferences and controls on Target OS

at itswill.

2.2 The Whole Structure
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Diagram 2—2 The Whole Sructure of VM Based Rootkit

There is no concepts of Host OS or Guest OS in this new VMBR scheme, thus
no need for aTota Context Switch that is absolutely necessary in Type || VMM, the
OS being controlled by VMBR isreferred to as Target OS.

The VMBR can be loaded via a kernel mode driver under Target OS, after
initialization process finished, the driver then becomes useless and can be unloaded as
normal. The physical memory pages that occupied by VMBR can be 1) alocated by
driver module by invoking the related kernel functions exported by Target OS and
freed when driver being unload, 2) found in free page list by searching the PFN
database maintained by Target OS, 3) reserved expediently by using a Boot option
(/burnmemory) in system Boot configuration file (boot.ini). The linear address region
where VMBR resides will be topmost 4M of the entire 4G space, an example of

detailed address space layout is shown as follows:

Windows 2000 build 2195 sp4 with no 4M page support patch in ntoskrnl.exe
Total physical memory range 512M with /burnmemory=200M

0x00000000 ~ 0x0009ffff  (0xal000 640Kk)

0x00100000 ~ Ox1ffeffff (Ox1feeffff 523,200Kk)

Physical memory range occupied by VMBR

0x18000000 ~ 0x18400000

Linear memory range occupied by Target OS in topmost 4M

Oxffd00000 ~ Oxffd13fff (0x14000 80K) ACPI

Oxffdf0000 ~ Oxffdfffff (0x10000 64K)  System (PCR &
Kl_USER_SHARED_DATA)

Oxfffe0000 ~ OxfffeOfff (0x1000 4K) HAL (maybe Timer Counter)

Linear memory range occupied by VMBR

Oxffe00000 ~ Oxffel8fff (0x19000 100K) VMBR.sys
Oxffe19000 ~ Oxffel9fff (0x1000 4k) Nexus
Oxffela000 ~ Oxffelafff (0x1000 4k) VM structure
Oxffelb000 ~ Oxffelbfff (0x1000 4k) IDT
OxffelcO000 ~ Oxffelcfff (0x1000 4k) GDT
Oxffeld000 ~ Oxffeldfff (0x1000 4k) LDT
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Oxffe1e000 ~ Oxffelefff (0x1000 4K)
Oxffe1f000 ~ Oxffelffff (0x1000 4K)

Oxffe20000 ~ Oxffe20fff (0x1000 4K)
Oxffe21000 ~ Oxffe21fff (0x1000 4K)
Oxffe22000 ~ Oxffe22fff (0x1000 4K)

Oxffe23000 ~ Oxffe72fff (0x50000 320Kk)

Oxffe73000 ~ Oxffe73fff (0x1000 4k)
Oxffe74000 ~ Oxffe74fff (0x1000 4k)
Oxffe75000 ~ Oxffe75fff (0x1000 4k)
Oxffe76000 ~ Oxffe76fff (0x1000 4k)
Oxffe77000 ~ Oxffe77fff (0x1000 4k)
Oxffe78000 ~ Oxffe78fff (0x1000 4k)

TSS

IDT stubs

Log buffer

Monitor page directory
Nexus page table
Monitor/Target page table
Target CPU state

Code physical page
Temporary physical page0
Temporary physical pagel
Transition page table
Page table linear address map

After being initialized successfully, the VM BR would have replaced the rea
information in hardware processor loaded by Target OS originally with its own ones
to fully virtualize the continue running of Target OS, which include Shadow GDT,
Shadow Page Table, Private TSS and IDT. Theresfter, atransparent intermediate layer
(VMM) has been created and functions properly between the Target OS and real
hardware, usually the processor will spend most of time on running codes of Target
OS, while Rootkit can only get controls of execution for awhile during the
occurrence of hardware interrupts or exceptions, and must resume the running of

Target OS quickly after various necessary processing.

2.3 Virtuaize 4 Modes of x86

Because the Rootkit in this scheme will be loaded only after the Target OS has
been booted successfully, we only discuss the virtualization of Protected Mode of x86
here, although Target OS may switch to Virtual 8086 Mode (a ntvdm launched) or
System M anagement Mode (SMM) occasionally (a SMI asserted). To keep a
light-weight implementation, we use completely direct execution to virtualize
Protected Mode.

2.4 Virtualize x86 Instructions Execution

We use complete direct execution mode combined with privilege level (ring)
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compression to virtualize the x86 instruction execution, that means all Target codes
(unmodified) will run natively on hardware processor, only with the privilege level of
Target kernel mode being lowered, therefore the execution of some privileged
instructions would consequentially incur exceptions due to privilege level
nonmatched, which then gives Rootkit good chances to emulate them. Asto privilege
level compression, there are two feasible schemes (because most modern operating
system only use two rings, here we assume that the Target OS also uses just ring0 and
ring3):

Scheme 1: Compress Target OS kernel mode (original ring0) to ring3. As could
be seen from the following chapters, this scheme is not good for distinguishing the
segment and page accessibility between Target OS user mode and kernel mode,
and will make virtualization implementation become extremely complex.

Scheme 2: Compress Target OS kernel mode (original ring0) to ringl. Thisisa

recommended scheme.

Just as we have talked before, x86 belongs to a non-grictly virtuaizable
architecture, so it is amost impossible to achieve a perfect virtualization by only
using the direct execution mode, but we would disclose various potential deficiencies
intensively in the next few chapters, and discuss how to try our best to reduce or
remedy them.

2.5 Virtualize Processor State Information

Rootkit reserves a small region in its memory space to maintain Target OS’s
virtual processor state information, which include general-purpose register set, flag
register, segment register set, control registers, debug registers,
GDTR/LDTR/IDTR/TR, some MSRs and PIC/APIC. Some state information which
are not used or modified by Rootkit can be left in hardware registers without any extra
saving operation. The genera -purpose registers, arithmetic flag bitsin EFLAGS and
segment registers should be saved each time when Target OS traps into Rootkit due to
interrupts or exceptions, because the succedent running codes of Rootkit might
change the contents in these registers. While the sensitive registers (include privileged
flag bitsin EFLAGS) should usually be saved when Target OS attempts to modify
them, which inevitably traps into Rootkit for emulation, such as the issuing of algdt
instruction by Target OS to reload GDTR. Rootkit must follow the real processor’s

processing logics strictly when it performs the emulation, meanwhile which also
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involves frequent references to the virtual processor state information, for example
when forwarding the hardware interruptsto Target OS, Rootkit should make its
decisions according to the current states of Target OS’s virtual interrupt flag (1F),
virtual interrupt controller and virtual IDT.

251 TheChangesin Processor State

=2 smsw isanon-privileged instruction, which storesthe lowest 16 bits of CRO
register to specified general-purpose register or memory location. A Real
Mode Target OS may use this instruction to find that it is actually running at
Protected Mode.

PE (Protection Enable)

MP

EM

TS

ET

NE

=2 pushf/pushfd can not be trapped under Protected Mode (can be trgpped
under Virtual 8086 when IOPL != 3), thus may expose potentially some
critical flag bitsin EFLAGS, such as IF and IOPL, while VM and RF bits
are always cleared in stack images. In order to prevent Target OS from

g s o

enabling/disabling hardware interrupts by using sti/cli instruction pair,
Rootkit would aways set hardware IOPL flag bit to O, at the same time the
hardware IF flag bit to O to ensure itself always has chance to obtain controls.
When running at Target OS user mode, IF and IOPL are generally set to 1
and O respectively (prevent user gpplication from disabling interrupt), thisis
just the same as what Rootkit sets, so Target OS would see no change.
However, when being at Target OS kernel mode, if Target OS disables
interrupt (cli, may trapped. popf/popfd or iret, failed silently) or sets IOPL
not equa to O (popf/popfd or iret, failed silently, Target OS will usualy not
do such a stupid thing) and follows aimmediate check, it will surprisedly
find the hardware IF and IOPL are ill 1 and O in fact.

8: TF Trap

9: IF Interrupt Enable

10: DF
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12-13: 10PL 1/O Privilege Level

14: NT

16: RF

17: VM V86 mode

18: AC

19: VIF

20: VIP

21: ID

= popf/popfd can not be trgpped under Protected Mode (can be trapped under

Virtual 8086 when IOPL != 3), and its execution results would heavily
depend on processor current mode and privilege level (CPL and IOPL),
under Protected Mode, IOPL can only be modified in ring0, while IF can be
modified only when CPL <= IOPL. Usuadly Target OS user mode would not
be affected, but its kernel mode may suffer from being not able to modify
some flag bits (IOPL and IF) dueto privilege compression, these instructions
fail silently with no exceptions occurred, thus no emulation chance for
Rootkit. In most cases Target OS will not use popf/popfd to modify [OPL
and IF flags, but it may choose to use the iret (the required protection
checking for IOPL and |F modification is similar to popf/popfd, but it can be
used to change VM flag) or sti/cli instead.

2.6 Virtualize Segmentation

The privilege compression is the core of the whole virtualization scheme,
moreover the privilege level of running code under x86 are decided by CPL (in
invisible parts of current code and stack segment registers) or segment selector RPL
(when interrupt/exception occurs, the RPL saved in stack represents the code privilege
before control transfer), therefore the implementation of privilege compression
actually requires to play tricks with segmentation of Target OS. Rootkit will not alow
the Target OS’s segment descriptor table to be used directly by hardware, instead it
provides a shadow descriptor table (Shadow DT) of its own for real processor, the
“Shadow” here means that Rootkit’s DT is very closely associated with Target OS’s
DT, any descriptor change happened in Target OS’s DT will be eventualy reflected to
Shadow DT with appropriate adjustment on descriptor’s DPL when performing the

synchronization action.
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The Following discussion will not deal with the LDT and Conforming Code
Segment, since few operating system uses them.

26.1 The Structureof Shadow Descriptor Table and Shadowing Algorithm

The Shadow DT contains some shadow descriptor entries (no more than 8192)
from the beginning, which virtualize the descriptorsin Target OS’s DT, then six
cached descriptor entries that correspond to six segment registers and are used to
emulate the x86 segment caching mechanism, finally anumber of entries reserved for
the use by Rootkit to describe itself (Rootkit descriptors). The segment present bit
(SPB) of shadow descriptors are initialized to be O (unshadowed state), while the SPB
and DPL of cached descriptors or Rootkit descriptors are 1 and O respectively. In this
way, any attempt to access the unshadowed (#NP), cached or Rootkit descriptor (#GP)
by Target OS would inevitably incur exception, which gives Rootkit chance to
emulate.

The Shadowing algorithm used when synchronizing descriptor pairsis shown as
follows: For a Data/Code segment descriptor of Target OS, its DPL must be changed
fromOto 1 (or 3), and limit be truncated if overlapped with Rootkit space. For a Gate
descriptor (such as call gate), itstarget code segment selector value must be modified
to 0.

26.2 Target Redefine DT

[gdt instruction can be trapped, so Rootkit may desynchronize all shadow
descriptors at this time, which could be done quickly by unmapping the pages where
descriptorsreside. After anew DT being defined, al previous traces installed on old
DT will be invalidated, yet the new DT needs not to be traced immediately. We only
install physical and linear traces on the Target OS pages which contain at least one
synchronized descriptor. Before desynchronization, we must cache the six active
shadow descriptors in advance, which means copying six shadow descriptors which
have been loaded into six segment registers currently to their corresponding cached
slots.

The introduction of Physical and Linear Trace will be arranged at the following
chapter (Virtualize Paging).
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2.6.3 Target Modify Descriptors

When Rootkit receives a notification that Target OS attempts to modify
synchronized descriptors via physical trace, it may desynchronize all affected
synchronized descriptors in Shadow DT, which could be done by setting SPB of these
descriptorsto 0 or smply unmapping the whole page if the page only contains
desynchronized descriptors. If apagein Target OS’s DT doesn’t contain any
synchronized descriptor longer, al physical and linear traces would totally be
cancelled then. Again, we must firstly perform the caching before desynchronization
as long as the modification involves to some active descriptors (currently used by one
of six segment register). We can see that Rootkit doesn’t synchronize affected
descriptors at this point, but instead it defers the new descriptors synchronization to
the moment when they are loaded subsequently, this deferred and asynchronous
shadowing scheme is advantageous for the emulation of updating segment cache and
synchronizing segment accessed bit.

26.4 Target Remap/Unmap DT

Rootkit may receive a notification when the page mapping of someregionsin
Target OS DT which contain synchronized descriptors has changed vialinear trace,
and the disposition method it uses is basically identical to descriptors modification
above. Rootkit makes no difference between remap and unmap here, the distinction
between these two actions would present only when Target OS loads descriptors from
that regions subsequently.

2.6.5 Target Load Segments

The action that Target OS loads synchronized shadowed descriptors may go
naturally, while loading unshadowed or desynchronized shadowed descriptors would
lead to #PF or #NP, upon that Rootkit will carry out the descriptor pairs shadowing,
segment register cache update and segment access bit synchronization. Here we
assure that the first loading of asegment descriptor shouldn’t happen naturally, and
must be trapped and emulated by Rootkit.

2.6.6 Inter-Segments Control Transfer
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Inter-segment control transfer involves code segment, stack segment (when
privilege level changed) switching and a series of protection checking, and most
importantly it must still go successfully under the condition of our privilege
compression, which becomes a crucial and relatively complex problem of the whole
segment virtuaization scheme. We are going to discuss inter-segment control transfer
topic from the following five transfer fashions.

26.6.1 Task Switching

Because most modern operating systems didn’t use the hardware task mechanism,
we aso sKkip it for the moment.

26.6.2 Call Gate

The DPL (0) or target code segment selector value (0) field has been adjusted by
Rootkit when performing the Target OS descriptors synchronization, thereby Rootkit
may get a chance for interposition when Target OS tries to transfer through a call gate,
the emulation logic is very similar to transferring with an interrupt/trgp gate which
will be talked later.

2.6.6.3 Direct jmp and call/ret Between Segments

Direct jmp and call/ret between segments don’t involve privilege level switching,
so privilege compression scheme would not affect this kind of transfer, and Rootkit
may let them go naturally. However, what should be noticed is that if we adopt the
first compression scheme that pushes Target OS kernel mode to ring3, then those
direct transfers from Target user mode to its kernel mode (or in reverse) which are
impossible at all under the normal condition would successfully happen by error.

2.6.6.4 Interrupt/Exception

Please refer to the chapter “virtualize interrupt/exception” for detailed analysis of
inter-segment transfer with interrupt/trap gate.

26.65 sysenter/sysexit
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In order to trap the actions that transfer with sysenter/sysexit instruction pairs by
#GP exceptions, Rootkit may simple set the hardware mode specified register (M SR)
SYSENTER_CS MSR (which defines the target segments of transfer directly or
indirectly) to 0, and the emulation processis aso similar to interrupt/trap gate.

2.6.7 Synchronize Segment Accessed Bit

When Target OS attempts to load a segment descriptor for the first time, Rootkit
starts to synchronize this descriptor pair and update the accessed bit of it as well.

2.6.8 The Changesin Segmentation System

The Change of GDTR: sgdt instruction can not be trapped at any privilege level,
so by which Target OS may find the change of GDT base address and limit. The
solution to this problem is using dynamic scanning technique or mapping Shadow
GDT at the Target expected location when running in Target user mode. Fortunately
GDT in most operation systems would usually be created at afixed memory address
known in compilation phase, so not necessary to be obtained by sgdt instructionin
runtime.

The Change of GDT Descriptors: When Target OS is running at ring3, Rootkit
may enforce page protection (supervisor bit) on the pages of its Shadow GDT. While
if the Target kernel mode has been compressed to ringl, Rootkit may truncate the
overlapped portions of Target OS’s code/data segment descriptors with the reduction
of their limits to protect itself, thus any access (for instance, to Shadow GDT) beyond
segment limit will incur #GP. Generally the DPL field of GDT descriptor in most
operating systems is static, and never checked.

The Change of Segment Selector: The change of RPL field in Target OS current
code segment sel ector, which is pushed on the stack when an interrupt/exception
occurs, would make the Target OS’s interrupt/exception handler impossible to
distinguish the format of trap frame correctly, and expose the fact that the running
privilege level has been lowered as well, fortunately this problem could be solved by
Rootkit emulating (capture, and then forward) the interrupt/exception for Target OS.
In aword, Rootkit should try its best to keep the Index and RPL fieldsin segment
register selectors as Target OS expected while segment descriptors’ DPL being
lowered, but unfortunately the RPL of CS and SS segment register selectors must be
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strictly identical to CPL.
Now we are about to discuss severa sensitive (segment related) but non-trgpped
instructions.

=2 When Target kernel mode has been compressed to ring3, then Target user
mode may have the accessibility to those segments that belong only to
kernel mode originally by using lar/Isl/verr/verw or segment loading
ingructions.

=2 |ar/lsl: Expose the change in segment limit and DPL of Target OS kernel
mode segments.

=2 mov r/m, Sreg/push Sreg: Expose the change of RPL in visible part (segment
selector) of Target OS kernel mode segment registers. Therefore, for some
segment registers, we should try to keep the RPL unchanged when segments
loading, but with their corresponding descriptors DPL lowered.

= Segment loading instructions (Ids/led/Ifs/Igs/Iss/pop Sreg /mov Sreg, r/m):
All instructions above may not be used to load CS, otherwise it leads to an
#UD exception, so we put the discussion of CS loading at inter-segment
control transfer. SS loading requires RPL=CPL=DPL, otherwise an #GPis
generated, S0 it’simpossible to keep RPL unchanged here. However, the
loading of DS, ES, FS, GS would only need Max(RPL,CPL)<=DPL aslong
as the target segment is a data segment or non-conforming code segment, so
in this case RPL can be kept unchanged. For example, the selector value of
DS is 0x0020, but the descriptor DPL it referenced is 3.

26.9 Segment Irreversibility

At first, we try to solve the segment inconsistency (or irreversibility) problem by
saving the active descriptors to corresponding cached descriptors (those cached ones
are used to emulate the hidden part of six segment registers) before they are
desynchronized, and updating the cached descriptors upon segment loading. However,
the deferred segment shadowing scheme has guaranteed that the cached descriptors
can be updated duly at the first loading of segment descriptors, so the caching
operation before desynchronization seems redundant then. Furthermore, because
usually this problem only happens during system Boot phase when switching from
Real Mode to Protected Mode (haven’t reloaded PM segments), we don’t talk it much

more.
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2.7 Virtualize Paging

Because Rootkit “steals” some portions in both linear address space and physical
memory of Target OS, and it also needs to use the access and protection bitsin
hardware page table to play all kinds of virtualization tricks, then Rootkit will not
allow the Target OS’s page directory table/page table to be used directly by hardware,
instead it provides a set of shadow table (Shadow Page Table) of its own for red
processor, its working principleis almost identical to Shadow Descriptor Table
mentioned previoudy, any PDE/PTE change happened in Target OS table will be
eventually reflected to Shadow table with appropriate adjustments on entry’s access,
protection attributes and physical address mapped when performing the shadowing.

2.7.1 The Structure of Shadow Page Table and Shadowing Algorithm

Rootkit spend anumber of physical memory to emulate the page directory
table/page table of Target OS, and this shadow table isinitialized to be empty except
for those entries that map itself, which can be done by marking most entries as invalid
(valid bit cleared).

=2  Target kernel mode being compressed to ringl: The lowest 12 access bits are

kept unchanged during shadowing, while the adjustments of physical
address part should be decided according to different cases. If the physical
address mapped has been in used by Rootkit itself, it will then allocate a new
page to substitute the requested one, at the same time it also records the
association rel ationship between these two physical addressesin case that
Target OS requests the same physical page again. Another solution is that
Rootkit abandons the physical page used and looks for another free page for
itself, this solution can effectively protect against Target OS’s DMA
operations, but it requires alot of content movement (copy) at the same time,
therefore now my Rootkit prototype only supports linear address relocation,
but not physical relocation.

=2  Target all modes being compressed to ring3: The shadowing algorithm is

similar as the above one, but there may exist an extra problem of how to
distinguish the page accessibility between different modes of Target OS. A
conceivable solution is that we split those tables that contain at least one
system entry into two shadow tables, which correspond to Target OS user
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mode (ring3) and system mode (ring0~2) respectively: For system mode, all
entries in Target table will be shadowed as user in shadow table (for system
mode use) except for those ones that assist virtualization. For user mode, we
keep the original settings of Target table, or smply don’t include those
system entriesin its shadow table (valid bits cleared). However, abetter
solution would be that Rootkit flushes totally the shadow table and restarts
with a empty one upon every privilege switching, and creates a proper set of
page table according to current privilege (CPL).

2.7.2 TheProcedure of Shadow Paging

Ininitial state, al entries in shadow table are marked asinvalid except for those
entries that map Rootkit itself, to be more exactly, only a nearly empty shadow page
directory table exists except for its last PDE, while dynamic shadow page tables are
created subsequently. When #PF occurs during Target OS running (the Pflag in error
code pushed on stack is 0), Rootkit emulates the action of hardware MM U by
traversing Target OS’s page directory table/page table. If no valid mapping is found,
then it ends up with forwarding and letting #PF to be handled by Target OS. When a
valid mapping isfound and also it is not caused by physical traces installed by Rootkit
(such as the read traces when Target OS is running at ringl), then Rootkit begins
shadowing, first shadows the corresponding PDE (if it is not be shadowed), next
creates a new shadow page table (if not be created) and shadows the corresponding
PTE with all other PTEs marked asinvalid, then write protects the appropriate portion
of Target OS table which contains shadowed entries, finally re-executes the faulting
instruction (may be a processor instruction fetching). When #PF address (CR2) is
overlapped with the Rootkit space, Rootkit may need to relocate itself to somewhere
else (linear address space conflict and linear address relocation), but thiswould
usualy incur a#GPfirst due to truncated segment limit.

2.7.3 Physical Trace

Physical Tracing isamechanism that Rootkit has the ability to install read, write,
read/write traces on Target OS’s physical memory pages, and be notified when
accesses (read and/or write) to these pages occur. Because the trace is based on
physical memory page, it requires Rootkit to maintain a set of reverse mapping, thet is
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mapping from physical addressto linear address. Physical tracing isimplemented by
degrading the access bits of all entries that map to a specified physical pagein
Rootkit’s shadow page table, for read/write trace mappings are degraded to invalid
(not present), while for write trace mappings are degraded to read-only (CRO.WP bit
must be also set when ringl compression scheme used). Each time when a new
mapping from linear address to physical address being inserted to shadow table, its
access bits may also need to be degraded according to the physical tracesinstalled on
that physical page. Rootkit would record those physical page address which have been
installed with traces, and the recorded addresses are Target OS requested addresses,
but not the adjusted addresses in shadow table, choosing Target requested addressis
because that Target OS may generally use consecutive physical pages, which would
simplify the codes of Rootkit that manage protected regions.

274 Linear Trace

Linear tracing is mechanism used by Rootkit to detect the mapping change
(unmap or remap) of agiven linear region range of Target OS. Rootkit achieves the
linear trace by detecting the changes of Target OS’ page table and trapping the MM U
instruction that loads PDBR, while the changes of Target OS’ page table can be
monitored by installing physical traces (write trace) on relevant physical pages, where
the entriesin Target OS page table that map the given linear region reside.

2.75 Target Sore PDBR

All instructions that store PDBR (CR3) can be trapped, Rootkit then emulates
them so that Target OS may not perceive the change of physica address of page
directory table. Usually, operating system would map the page directory table (and
each pagetable) at afixed linear address for a convenient memory management, for
example in Windows 2000, the page directory table of any processis arranged to start
at 0xc0300000.

2.7.6 Target Load PDBR

Here we don’t discuss the context switch via hardware task mechanism at the
moment. All instructions that load PDBR (CR3) can be trapped, Rootkit then may
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update the entire shadow table at this time. What should be noticed is that all
hardware TLB entries must be flushed except for those used to map Rootkit itself
after table update.
= Synchronous Scheme (not recommended): Converts and inserts each entry in
Target OS newly loaded page directory table/page table to shadow table, and
then ingtalls physical traces (write trace) on those physical pages where
Target OS table reside after the shadowing finished.
= Asynchronous Scheme: Empties entirely the shadow table and starts anew,
then cancels al the traces aimed at Target OS page directory table/page table
as well. Although all physical traces installed previoudy are not in existence
and don’t function well anymore at present, they can be restored gradually
along with mappings being inserted dynamically.

2.7.7 Target Modify PDE/PTE

Because of the write traces installed by Rootkit, any attempt to modify the
shadowed entries by Target OS would incur a#PF, then Rootkit handles it accordingly,
and finally it flushes the corresponding TLB entries.

= Synchronous Scheme (not recommended): The write trace is base on the

granularity of a page size, therefore #PF handler should decide all affected
entries according to the target address of write operation. Those entries
affected must be shadowed again.

= Asynchronous Scheme: All affected entries would be unshadowed (set to a

non-present state as default), while the actua shadow actions of these entries
would be deferred until Target OS accesses the addresses mapped by them
later.

2.7.8 Target Flush TLB

The TLB flush operations of Target OS may include:

=2 Useinvlpgingructionto flushaTLB entry correspond to a given linear page
that is specified with instruction operand.

=2 Reload CR3register to flush all non-global TLB entries.

=  Modify any paging flag (PE, PG in CRO, and PGE, PSE, PAE in CR4) to
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flush all TLB entries.

We don’t discuss the third case here, and the second case has also been analyzed.
Asto thefirst case, the processing of TLB flush with invlpg instruction is actually
very similar to the modification of PDE/PTE discussed above: first Rootkit
unshadows the shadow entry that maps the desired page specified by instruction
operand, and then flushes the corresponding hardware TLB entry.

2.7.9 Maintain The Accessed/Dirty Bits

Processor will update the Accessed (PDE) and Dirty bits automatically so that
operating system may get feedbacks of its page usage, therefore Rootkit should
correctly emulate the Accessed/Dirty bits in Target OS page directory table/page table.

= Scheme 1: When Target OS accesses its own page table or Rootkit empties a

set of previous virtua page table, Rootkit may update the A&D bitsto Target
table timely. In order to interpose when Target OS accesses its own table,
Rootkit may impose read traces on the physical pages of Target table, which
would not incurs #PF too frequently because Target table is not used directly
by hardware processor.

=2 Scheme 2: For asynchronous shadowing scheme, because each entry will be

shadowed when it isfirst accessed, then Rootkit may set it to Accessed (in
both shadow table and Target table) and temporary read-only (in shadow
table) at this time. When relevant pages mapped being written for the first
time, shadow entry (in shadow table) will be set to Dirty automatically by
hardware processor, then Rootkit only needs to set shadowed entry (in Target
table) to Dirty also and restore the access bits of shadow entry according to
that of the current shadowed entry. Because here we set shadow entry to be
temporary read-only factitiously, then the #PF handler must depend on the
real state of shadowed entry to decide whether it is a genuine #PF or an extra
one we brought in.

2.7.10 Handlethe Page Fault

When #PF occurs during Target OS running (the error code pushed on stack call
tell usthe reason for fault), Rootkit emulates the action of hardware MMU by
traversing Target OS’s page directory table/page table. If no valid mapping is found,
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then it ends up with forwarding and letting #PF to be handled by Target OS. When a
valid mapping isfound and also it is caused by physical traces installed by Rootkit
(known from the fault addressin CR2), then Rootkit disables the trace installed on
this mapping temporarily, and finally restores it to degradation state after single
stepping the faulting instruction. What should be noticed is that Rootkit should use
invlpg instruction to flush TLB entry for this mapping after restoration, otherwise the
trace might not function well any longer.

2.7.11 Linear Address Space Confliction

When Target OS accesses (via #PF before shadowing) or maps (vialinear tracing
facility) the linear range that has been occupied by Rootkit, Rootkit must relocate
itself to some other free region by adjusting the base address of its code segment
descriptor, which reguires no content movement. In addition, after this relocation
hardware GDTR, IDTR must be reloaded with descriptors of Rootkit itself inside
these tables being adjusted accordingly, and M SR registers (describes the syscall entry
points) are aso updated to point to the new entry address. As an optimization, Rootkit
may load initially into a special region known as not used by given Target OS.

2.7.12 The Changesin Paging System

=  The Change of CR3: All instructions that access CR3 can be trgpped, so
Rootkit may smply emulate them.

= The Change of Page Directory Table/Page Table: Because Target OS can not
perceive the change of CR3, also generaly operating systems would map the
page directory table (and each page table) at a fixed linear address, Target
OS shouldn’t be able to access the region of shadow table unless it does by
accident, event so Rootkit can still protect its shadow page table in the same
way like what it does to protect its shadow GDT that we have talked before.

2.8 Virtuaize TSS

Virtualizing TSS is essential to interrupt/exception emulation (ring 0~2 stack
pointer) and /O instructions capture (1/O permission bitmap).

28.1 TheStructureof Private TSS

30



Most modern operation systems are not inclined to use the hardware task
mechanism, but the software task method instead to perform task switching manually.
For example, Windows XP just uses one TSS for dl processes, whose descriptor
selector value is 0x0028 with DPL equal to 0, most fieldsin TSS are insignificant and
usualy it doesn’t contain avalid 1/0 permission map (its offset beyond TSS limit),
and XPonly updates PDBR, ring0 stack and I/O map offset fieldsin TSS upon task
switching (SwapContext).

Rootkit will provide a private (virtual) TSS and aTSS descriptor of its own for
usedirectly by real processor: the private TSS resdes in Rootkit’s linear region,
which is pointed by Base field in TSS descriptor, while the private TSS descriptor
belongs to the Rootkit Descriptors portion in Shadow GDT with arelative higher
selector value (the selector value of VMware’s private TSS descriptor is 0x4000). The
ring0 stack field in TSS points to the private ring0 stack of Rootkit, whichis
represented by aring0 stack segment selector: stack pointer pair and must has
sufficient space, while the 1/0O permission map field may be configured according to
the current privilege level.

28.2 Target SoreTR

str instruction can not be trapped at any privilege level, so by which Target OS
may find the value change of TSS selector, but it is still impossible for it to access the
TSS descriptor. Fortunately operation system would usually map the TSS to afixed
linear address and keep the addressin PCR gructure (be the same as GDT and IDT),
the TSS descriptor selector value is also invariable (constant) and not necessary to be
obtained by str instruction at runtime.

283 TargetLoad TR

Itr instruction can be trapped, then Rootkit only needs to save the new TSS
selector value set with no tracesinstalled on new TSS, and Rootkit will access Target
OS’sTSSonly when it is necessary (forward interrupt/exception or emulate 1/0).
Because most modern operating systems only use one TSS shared by all tasks (not
one TSS per task as before), Rootkit may hardly come across this instruction.

2.9 Virtualize Interrupt/Exception
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Virtualizing interrupt/exception is a prerequisite. Firstly because the kernel mode
privilege level has been lowered, it is impossible for Target OS itself to handle the
interrupt/exception directly. The interrupt/exception emulation helps to hide the fact
of virtualization, and avoids exposing the changes of segment selectors and some
flags bit in trap frame. In addition, interrupt/exception is the only approach for
Rootkit to gain execution control, and also handling various exceptionsisthe
foundation for it to play all kinds of virtuaization tricks.

29.1 TheStructureof Private IDT

Firgly let’s see a example of IDT under Windows XP (sp2):
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fc: 804df4bb 000000f5 (KINTERRUPT 804df47f)
00000000 (KINTERRUPT 0000f464)

fd: 804df4c2 0000006 (KINTERRUPT 804df486)
00000000 (KINTERRUPT 0000f564)

Inthe IDT shown above: the first 32 entries (Ox0~0x1f) are exceptions reserved
by Intel, anong these entries, NMI, #DF, #M C are handled particularly by task gate
mechanism, #BP and #OF are interrupt gates with DPL = 3, and dll therests are
interrupt gates with DPL = 0. The following Ox2a~0x2f are software interrupts portion,
which are interrupt gates with DPL = 3 except for Ox2f (DPL = 0), and Ox2d, 0x2e
serve as debug service and system call service respectively. Finally comes the
hardware interrupts portion, which are 0x30~0x3f and correspond to IRQO~IRQf.

Rootkit provides a private IDT (resides in Rootkit space) that is pointed by
hardware IDTR, in which the basic layout of descriptorsisamost areprint of Target
OS’ IDT, and also a separate handler (stub) for each vector, which can be indexed by
each corresponding interrupt gate descriptor in private IDT. Because the generation of
hardware interrupts and exceptions don’t need to check (ignore) the DPL of gate
descriptors, all gate descriptorsof Target IDT may keep their DPL unchanged in the
private IDT except for those software interrupts with DPL = 0, whose DPL must be
modified to 1 (or 3). Recurring to private IDT and TSS, Rootkit would be able to get

execution control at the first time when interrupt/exception occurs.

2.9.2 HandleInterrupt/Exception

When interrupt/exception occurs, the corresponding handler of Rootkit gets
invoked, and processor has created in advance a interrupt/exception frame in ring0
stack specified in Rootkit’s private TSS as follows:

On rootkit’s own stack (inter-privilege)

Low address:

Error Code (if needed)
EIP

CS

EFLAGS

ESP

SS
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High address:

The stack images pushed of SS, CS and EFLAGS would be the real valuesin
hardware registers during the running of Target OS, which may not be what Target OS
expects and must be fixed accordingly when forwarding. Before further processing,
Rootkit must save the Target OS’ context firstly, which involves primarily the
general-purpose registers and data segment registers. In order to access the whole 4G
address space, Rootkit may load DS with its own data segment in and switch it back
before returning to Target OS, otherwise iret instruction would invalidate DS register
due to privilege level unmatched (however, in practice Rootkit also may not use flat
mode segments of its own for the sake of easier code relocation). Rootkit may get to
know the running privilege level of Target OS when interrupt/exception happens
according to the SS and CS pushed in trap frame, moreover it can judge whether it is
an exception resulted from the virtualization of itself or not by considering all facts
comprehensively, which include the exception vector, error code, faulting address
(EIP) and #PF address (in CR2). For the exceptions as results of virtualization,
Rootkit may perform necessary processing and then return directly, on the other hand
for those hardware interrupts, software interrupts and exceptions incurred by Target
OS, Rootkit hasto forward them to Target OS correctly.

The exceptions introduced by Rootkit virtualization include #PF, #GP and #NP
etc. Usualy, #PF isdue to the physical traces installed on some pages of Target OS by
Rootkit (or unmapping the pages where desynchronized segment descriptorsreside),
the reason of #GPisin that al kinds of privilege related checkings may fail when
Target OS is running with degraded privilege level, while #NPis the result of Target
loading desynchronized segments. After various appropriate processing (omitted)
according to various situations, Rootkit may return to the location of faulting
instruction or its next instruction directly, moreover it may return immediately to the
location of transfer target if the faulting ingtruction is a certain control transfer
instruction, the detailed return steps include restoring ssgment and general-purpose
registers at first, then following a stack pop of error code, and afinal iret instruction.

In contrast with the exceptions process ng above, the forwarding of those
hardware interrupts, software interrupts and exceptions by Target OS are not as easy
as the emulation of those deferred interrupts by Windows HAL, which only needs to
simply execute aint xx (HalpHardwarel nterruptxx), here in fact the word “forward”

means that Rootkit uses software method to accurately emulate the generation process

36



of interrupt/exception by hardware processor, the involved steps are listed as follows.

=2

If it isa hardware interrupt, then decides whether it is allowed to generate or
not according to the related bitsin IMR of virtua PIC and IF flag of
EFLAGS.

Locates Target OS’ IDT and indexes the corresponding gate descriptor by
interrupt/exception vector and virtualized IDTR of Target OS.

Decides whether a privilege switch should happen or not by comparing
Target OS’s current privilege level with the privilege level of target code
segment specified in gate descriptor.

If aprivilege switch should happen, then locates the corresponding
internal-ring stack pointer pair according to the privilege level of target code
segment and the virtualized TSS of Target OS (TR and GDT as well).

Fakes a correct interrupt/exception frame on appropriate stack (the current
stack or stack of internal-ring) .

Clears some flag bits in virtualized EFLAGS of Target OS according to the
type of gate descriptor.

Transfers control to proper handler of Target OS, and the forwarding ends.

Actually we have omitted a series of protection checkings performed by red

processor in above-mentioned steps for simplicity, which may include the checking of

privilege level, type and limit etc. Anyone of these checkingsfails, then the resulting

exception would be forwarded to Target OS in the first place before the current

interrupt/exception to be forwarded.

Before actual transferring to interrupt/exception handler of Target OS, Rootkit

would fake a correct interrupt/exception frame as follows on the appropriate stack of
Target OS:
On target’s current stack (intra-privilege)

Low address:

Error Code (if needed)
EIP

CS

EFLAGS

High address:
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On target’s inner stack (inter-privilege)
Low address:

Error Code (if needed)

EIP

CS

EFLAGS

ESP

SS

High address:

The stack images pushed of SS, CS and EFLAGS would all be the values when
Target OS runs natively (not be virtualized), which should absolutely be what Target
OS expects. For the reason that interrupt/exception handlers would usually distinguish
the format of trgp frame by judging the RPL value of CS selector image on stack, for
example Linux decides whether or not it isainter-privilege level transfer by
comparing RPL of CS selector image with 3. Therefore creating correct
interrupt/exception frames on appropriate stacks of Target OS may ensure the proper
running of Target OS, and aso avoid exposing the fact of virtualization.

The actual transfer from Rootkit to Target OS’s interrupt/exception handler is
completed by airet instruction, before that Rootkit should fake a interrupt/exception
frame on the stack of its own, which would eventually emulate a inter-privilege level
return to Target OS. The interrupt/exception frame created as follows:

On rootkit’s own stack (inter-privilege)

Low address:

EIP

CS
EFLAGS
ESP

SS

High address:

The CS.EIP pair isthe address of Target OS’s interrupt/exception handler that is
specified in gate descriptor, and the RPL of CS must be fixed according to the
segment compression scheme used. The SS:ESP pair is either the current stack of
Target OS or internal-ring stack taken from its current TSS, also the RPL of SS
(internal-ring stack) must be adjusted. Asto the EFLAGS, we may clear some flag
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bits (TF, NT, VM, RF and IF when an interrupt gate used) on the base of the value
pushed on the stack when Target OS traps to Rootkit, however the hardware IF must
always set, so we only clear IF flag in the virtuaized EFLAGS of Target OS in stead
of the real one.

Here we assume that all interrupt/exceptions are generally handled by Target OS
kernel mode, although there may surely exist some exceptions, such asthe XOK
operating system which handles some non-critical exceptions and software interrupts
in user mode routines. When Target kernel mode being compressed to ringl, because
the CS selector RPL (0) in trap frame < CPL (1), Target OS’s inner-privilege level
return (return to the same privilege level) would definitely incur a#GP, which then
needs Rootkit to help to emulate the iret instruction, while its inter-privilege level
return may go natively. When Target kernel mode being compressed to ring3, the
inner-privilege level return would also need to be emulated by Rootkit because it is
impossible to return to a code segment with higher privilege level in x86, while the
inter-privilege level return may happen by error since it is considered as an inner
return (CS RPL and CPL are both 3), which then leads Target OS to awrong routing.
It is advantageous for perfect virtuaization of the flags bits modification by iret
instruction that Rootkit interposes and emulates the interrupt/exception return of
Target OS, afeasible approach is that Rootkit putsainvalid EIP that points to its own
linear space when it fakes the trap frame on Target stack, in thisway it not only
doesn’t expose the virtualization footprints, but also ensures that every iret of Target
OS would incur a#GP because the target EIP beyond the limit of target code segment,
and then give Rootkit a opportunity to perform emulation.

29.3 Target SorelDTR

sidt instruction can not be trapped at any privilege level, so by which Target OS
may find the change of IDT base (usually limit is unchanged Ox7ff), but it is still
impossible for it to access the descriptorsinside it. Fortunately operation system
would usualy map the IDT at afixed linear address and keep the addressin PCR
structure (be the same as GDT and TSS), therefore no need to obtain it via sidt

instruction at runtime.

29.4 Target Load IDTR
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lidt instruction can be trapped, then Rootkit only needs to save the new IDT’s
base and limit set with no tracesinstalled on it, and Rootkit will access Target OS’s
IDT only when it is necessary (forward interrupt/exception). Because most operating
systemsonly set IDT in system initialization phase and don’t modify it anymore,

Rootkit may hardly come across this instruction.

2.10 Virtualize Devices

Because VM Based Rootkit is not afull-fledged machine virtualization project, it
isimpossible and unnecessary to provide a complete set of virtual devices for Target
OS, what Target OS saw are still those rea physical hardware, however this doesn’t
mean Rootkit has no ability to interpose and control the device related operations of
Target OS. Because of the opportunity when Rootkit starts, it has no chance at al to
do anything to the device enumeration and configuration process (also known as PCI
probing), but it can undoubtedly control the succedent device operations after that.

Next we are going to discuss briefly how to virtualize four general device operations.

2.10.1 Port Mapped I/0

Rootkit can utilize the IOPL flag bit combined with I/O permission map to
capture all in/out instructions that issued by Target OS to access I/O address space. It
goes like this: Whichever privilege level Target OS isrunning at, the hardware |OPL
will be always set to 0 to prevent Target OS from enabling/disabling interrupt by
using sti/cli instruction pair. When virtualized CPL <= virtualized IOPL , that means
Target OS isrunning with 1/0 accessright, all other relevant bitsin private TSS 1/0
permission map will be cleared except for those ports for which Rootkit cares. While
virtualized CPL > virtualized IOPL, al cleared bits above mentioned will be set to the
current values of Target OS’sreal TSS. Once the I/O port accesses being captured,
Rootkit may discard, modify (perform real 1/0 access for the Target OS, but do some
modifications on incoming/outgoing data) or emulate them according to the

requirements.

2.10.2 Memory Mapped 1/0

Some devices have registers or storage regions which are shown as the form of
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mapped memory, that means these stuffs are mapped directly into the processor’s
physical memory address space and processor may use ordinary memory-reference
instructions to access them, for instance the registers of Local APIC and video buffer
(VRAM). Rootkit may utilize the paging mechanism provided by processor to capture
these memory mapped I/O: smply unmapping its physical pages or enforcing some
page protections on its corresponding linear pages both allow Rootkit to get chances
to virtualize the access to memory mapped devices.

2.10.3 Hardware IRQ

We have discussed fully the capture and forwarding of hardware interrupt in
previous chapters, what still deserves afew words here is the virtualization of
interrupt controller. Target OS may frequently configure the interrupt mask register
when running, while for Rootkit, masking some IRQs (clock interrupt IRQ0) may
result in theits loss of control, therefore it must maintain a virtual interrupt controller
by itself. The structure and working principle of APIC used in SMP system are
relatively complex, while virtualizing a PIC seems much easier, which is some similar
to the virtualization of IRQL in Windows kernel. Rootkit creates and maintains a
virtual PIC of its own, which further includes the interrupt mask register, interrupt
request register, interrupt in-service register (IMR, IRR, ISR) etc, all captured
operations to relevant ports of hardware PIC would eventually be reflected to this
virtual PIC, and then Rootkit may use the state information in such avirtual PIC to

make decision when forwarding hardware interrupts.

2.10.4 DMA

The DMA operation of device is abig headache to virtualization, especially
under the circumstance when the current PCI bus allows the PCI devices (interfacesin
fact) to become the master devices of bus, and to perform so-called Bus M astering
DMA. Whichever DMA method being used, the third-party DMA through system
DMA controller (two cascaded 8237) or the Bus Mastering DMA, it is extremely
disadvantageous for virtualization in that Target OS may exploit device DMA to
access any desired rea physical memory page, which may bypass all the memory
protections imposed by Rootkit’s segment/paging virtualization strategies, and
potentially destroy the memory regions occupied by Rootkit itself. Presently the best
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solution isto capture the address setting actions to system DMA controller or related
DMA registers in PCI interfaces (such as DMA region table and BMIDTPX register
in IDE interface), and to fully emulate them, however this would undoubtedly reduce
the generality heavily, and increase implementation complexity at same time. Besides
there is another workaround, which marks the physical pages occupied by Rootkit as
bad (such as parity error) in PFN database maintained by Target OS to prevent it from
using those pages thereafter, but its obvious disadvantage is the introducing of new
virtualization footprints. AMD Pacifica uses DEV (Device Exclusion Vector)
technique to enforce DMA protection.

2.11 The Payload of VMBR

After VM Based Rootkit being loaded as an intermediate layer between Target
OS and the red hardware, what it can see directly are just those hardware related
events, such asinstruction executions, interrupt requests and 1/O operations, however
Rootkit may also control the internal running logics and states of Target OS by using
VMI (Virtual Machine Introspection) technique.

Infact, what a VM Based Rootkit can really do only depends on your
imagination, here | will demonstrate how to hide specified processinicesword (a
famous rootkit revealer by Chinese) in my VM BR prototype. For the purpose of
anti-debugging, icesword periodically restorestheint 1 and int 3 vectorsin IDT to
their original values which should point to the debug and breakpoint exception
handlers provided by Target OS, and aso it may clear the debug registers (drO ~ dr3)
to prohibit hardware breakpoints, however all of these anti-debugging methods are
uselessin avirtualized environment because all sensitive operations are actually
emulated by Rootkit. Having broken through the obstacle of anti-debugging, the left
works seem much easier, we set a hardware breakpoint at the function used by
icesword to enumerate processes (ExEnumHandleTable, undocumented), then another
breakpoint at the location of the callback function which is passed as an argument.
When callback function called, we simply filter out the desired process by comparing
the process identifier. A companion application is used combined with VMBR, which
communicates to VMBR stedlthily by a software breakpoint instruction (int 3) with
eax equal to amagic number and ebx equal to the desired process identifier. By
comparing the two following pictures, we can see that the command line process
(CMD.exe, pid 808) has been hidden from the process list.
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Chapter 3 Conclusion

Because x86 is not agrictly virtualizable processor architecture, at present my
VMBR prototype has not implemented a perfect virtudization with the lack of binary
translation or dynamic scanning techniques, however this proof of concept has at least
proved that it can coexist with Target OS and work properly, which further validates
the correctness of the whole virtualization scheme that we discussed.

My future works include 1) trying to support more Target OSes (only Windows
2000 is digible for serving as Target OS now), 2) adding more supports for advanced
processor features, such as SMPand SMM etc, 3) introducing simple dynamic
scanning module to deal with those non-virtualizable instructions of x86.

We can see very clearly from the following diagram, when running at a
virtualized environment, the executions of al privileged instructions of Target OS
would |neV|tany incur exceptions and be emulated by VM BR.
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